Menu Close

Author: Tinku Tara

An-urn-contains-24-balls-6-white-6-black-6-green-and-6-red-If-4-balls-are-drawn-at-random-with-replacement-What-is-the-probability-that-at-least-3-different-colors-are-represented-in-the-

Question Number 133818 by bramlexs22 last updated on 24/Feb/21 $$\mathrm{An}\:\mathrm{urn}\:\mathrm{contains}\:\mathrm{24}\:\mathrm{balls}\::\:\mathrm{6}\:\mathrm{white}\:,\:\mathrm{6}\:\mathrm{black},\: \\ $$$$\mathrm{6}\:\mathrm{green}\:,\:\mathrm{and}\:\mathrm{6}\:\mathrm{red}.\:\mathrm{If}\:\mathrm{4}\:\mathrm{balls}\: \\ $$$$\mathrm{are}\:\mathrm{drawn}\:\mathrm{at}\:\mathrm{random}\:\mathrm{with}\:\mathrm{replacement} \\ $$$$.\:\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{probability}\:\mathrm{that} \\ $$$$\mathrm{at}\:\mathrm{least}\:\mathrm{3}\:\mathrm{different}\:\mathrm{colors}\:\mathrm{are}\: \\ $$$$\mathrm{represented}\:\mathrm{in}\:\mathrm{the}\:\mathrm{sample}\:? \\ $$ Terms of Service…

Question-68278

Question Number 68278 by TawaTawa last updated on 08/Sep/19 Commented by mr W last updated on 08/Sep/19 $${it}\:{is}\:{to}\:{see}\:{that}\:{the}\:{crocodile}\:{takes} \\ $$$$\mathrm{0}.\mathrm{5}\:{seconds}\:{for}\:\mathrm{1}\:{meter}\:{in}\:{water}\:{and} \\ $$$$\mathrm{0}.\mathrm{4}\:{seconds}\:{for}\:\mathrm{1}\:{meter}\:{on}\:{land}.\:{is} \\ $$$${this}\:{true}?\:{because}\:{i}\:{thought}\:{a}\:{crocodile} \\…

Prove-that-if-Li-2-x-n-1-x-n-n-2-then-x-Li-2-x-Li-2-1-x-pi-2-6-ln-x-ln-1-x-x-0-1-Li-2-x-Li-2-1-x-pi-2-6-ln-x-2-Find-A-n-1-n-n-2-an

Question Number 68270 by ~ À ® @ 237 ~ last updated on 08/Sep/19 $$\:{Prove}\:{that}\:\:{if}\:\:{Li}_{\mathrm{2}} \left({x}\right)=\underset{{n}=\mathrm{1}} {\sum}\:\frac{{x}^{{n}} }{{n}^{\mathrm{2}} }\:\:\:{then} \\ $$$$\forall\:{x}\:\:{Li}_{\mathrm{2}} \left({x}\right)+{Li}_{\mathrm{2}} \left(\mathrm{1}−{x}\right)\:=\:\frac{\pi^{\mathrm{2}} }{\mathrm{6}}\:−{ln}\left({x}\right){ln}\left(\mathrm{1}−{x}\right)\:\: \\…

find-f-x-if-f-1-x-f-1-x-x-

Question Number 68260 by aliesam last updated on 08/Sep/19 $${find}\:{f}\left({x}\right)\:{if}\: \\ $$$${f}\left(\frac{\mathrm{1}}{{x}}\right)+{f}\left(\mathrm{1}−{x}\right)={x} \\ $$ Commented by Prithwish sen last updated on 08/Sep/19 $$\mathrm{Put}\:\mathrm{x}=\:\frac{\mathrm{1}}{\mathrm{x}}\:\Rightarrow\mathrm{f}\left(\mathrm{x}\right)+\mathrm{f}\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{x}}\right)=\frac{\mathrm{1}}{\mathrm{x}}……\left(\mathrm{i}\right) \\ $$$$\mathrm{Putx}=\:\frac{\mathrm{x}}{\mathrm{x}−\mathrm{1}}\Rightarrow\mathrm{f}\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{x}}\right)+\mathrm{f}\left(\frac{\mathrm{1}}{\mathrm{1}−\mathrm{x}}\right)=\frac{\mathrm{x}}{\mathrm{x}−\mathrm{1}}…..\left(\mathrm{ii}\right)…