Question Number 2722 by prakash jain last updated on 25/Nov/15 $$\mathrm{Is}\:\mathrm{the}\:\mathrm{following}\:\mathrm{series}\:\mathrm{convergent} \\ $$$$\underset{{i}=\mathrm{1}} {\overset{\infty} {\sum}}\:\frac{\mathrm{sin}\:{i}}{{i}} \\ $$ Answered by Filup last updated on 25/Nov/15 $$\mathrm{no}…
Question Number 68257 by ~ À ® @ 237 ~ last updated on 07/Sep/19 $$\:\:{Prove}\:{that}\:\:\frac{\mathrm{6}}{\mathrm{673}}\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\:\frac{\mathrm{1}}{{n}^{\mathrm{2}} \begin{pmatrix}{\mathrm{2}{n}}\\{{n}}\end{pmatrix}}\:=\:\frac{\pi^{\mathrm{2}} }{\mathrm{2019}}\: \\ $$ Terms of Service Privacy…
Question Number 2720 by prakash jain last updated on 25/Nov/15 $$\mathrm{Analytical}\:\mathrm{Continuation} \\ $$$$\mathrm{Sum}\:\mathrm{of}\:\mathrm{the}\:\mathrm{below}\:\mathrm{divergent}\:\mathrm{series}\:\mathrm{was} \\ $$$$\mathrm{shown}\:\mathrm{to}\:\mathrm{be}\:\mathrm{using}\:\mathrm{analytical}\:\mathrm{continuation}. \\ $$$$\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}\mathrm{2}^{{i}−\mathrm{1}} =−\mathrm{1}\:\:\:\:\:\:…\left(\mathrm{A}\right) \\ $$$$\zeta\left(−\mathrm{1}\right)=\underset{{i}=\mathrm{0}} {\overset{\infty} {\sum}}{i}=−\frac{\mathrm{1}}{\mathrm{12}}\:\:\:\:\:\:…\left(\mathrm{B}\right) \\…
Question Number 133789 by oustmuchiya@gmail.com last updated on 24/Feb/21 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 133791 by mnjuly1970 last updated on 24/Feb/21 $$\:\:\:\:\:\:\:\:\:\:\:\:……{advanced}\:\:\:\:{integral}…. \\ $$$$\:\:\:{prove}\:\:{that}\::: \\ $$$$\:\:\:\:\:\:\:\:\:\boldsymbol{\phi}=\int_{\mathrm{0}} ^{\:\infty} \left(\frac{\mathrm{1}−{e}^{−\varphi{x}} }{\mathrm{1}+{e}^{\varphi{x}} }\:\right)\frac{{dx}}{{x}}\:=?? \\ $$$$\:\:\:\varphi:\:=\:{Golden}\:{ratio}… \\ $$$$ \\ $$ Answered…
Question Number 133786 by bobhans last updated on 24/Feb/21 $$\mathcal{A}\:=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \mathrm{sin}^{−\mathrm{1}} \left(\frac{{x}^{\mathrm{2}} +\mathrm{1}}{\:\sqrt{\mathrm{2}{x}^{\mathrm{4}} +\mathrm{2}}}\:\right)\:{dx}\:=? \\ $$ Answered by john_santu last updated on 24/Feb/21 $${Using}\:{the}\:{Pythagorean}\:{theorem}\:…
Question Number 133783 by bramlexs22 last updated on 24/Feb/21 $$\mathrm{To}\:\mathrm{complete}\:\mathrm{a}\:\mathrm{job},\:\mathrm{24}\:\mathrm{worker}\:\mathrm{are} \\ $$$$\mathrm{needed}\:\mathrm{in}\:\mathrm{35}\:\mathrm{days}.\:\mathrm{After}\:\mathrm{they}\:\mathrm{worked} \\ $$$$\mathrm{for}\:\mathrm{8}\:\mathrm{days}\:,\:\mathrm{half}\:\mathrm{of}\:\mathrm{the}\:\mathrm{workers}\: \\ $$$$\mathrm{stopped}\:\mathrm{working}\:.\:\mathrm{In}\:\mathrm{order}\:\mathrm{for} \\ $$$$\mathrm{work}\:\mathrm{to}\:\mathrm{be}\:\mathrm{completed}\:,\:\mathrm{an}\:\mathrm{additional} \\ $$$$\mathrm{time}\:\mathrm{of}\:….\:\mathrm{days}\:\mathrm{needed} \\ $$$$\left(\mathrm{a}\right)\:\mathrm{54}\:\:\:\:\:\left(\mathrm{b}\right)\:\mathrm{38}\:\:\:\:\left(\mathrm{c}\right)\:\mathrm{28}\:\:\:\:\:\left(\mathrm{d}\right)\:\mathrm{14} \\ $$$$\left(\mathrm{e}\right)\:\mathrm{19}\: \\…
Question Number 68244 by mathmax by abdo last updated on 07/Sep/19 $${find}\:{nature}\:{of}\:{the}\:{serie}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:{arctan}\left({n}+\frac{\mathrm{1}}{{n}}\right) \\ $$ Commented by mathmax by abdo last updated on 23/Sep/19…
Question Number 133782 by bramlexs22 last updated on 24/Feb/21 $$\mathrm{Find}\:\mathrm{maximum}\:\mathrm{and}\:\mathrm{minimum}\: \\ $$$$\mathrm{value}\:\mathrm{of}\:\mathrm{function}\:\mathrm{y}=\mathrm{cos}\:^{\mathrm{2}} \mathrm{x}\:+\mathrm{cos}\:\mathrm{x}\:+\mathrm{3}\: \\ $$$$\mathrm{on}\:\mathrm{interval}\:\mathrm{0}\leqslant\mathrm{x}\leqslant\frac{\pi}{\mathrm{2}} \\ $$ Answered by bobhans last updated on 24/Feb/21 $$\:{y}=\left(\mathrm{cos}\:{x}+\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}}…
Question Number 68242 by mathmax by abdo last updated on 07/Sep/19 $${find}\:{lim}_{{x}\rightarrow\mathrm{0}} \:\:\:\frac{{cos}\left(\pi{x}^{{x}} \right)+\mathrm{1}}{{x}^{\mathrm{2}} } \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com