Question Number 133776 by bramlexs22 last updated on 24/Feb/21 $$\:\frac{\mathrm{d}^{\mathrm{2}} \mathrm{y}}{\mathrm{dx}^{\mathrm{2}} }\:=\:\mathrm{sin}\:\mathrm{3x}\:+\:\mathrm{e}^{\mathrm{x}} \:+\:\mathrm{x}^{\mathrm{2}} \:,\:\mathrm{when}\:\mathrm{y}'\left(\mathrm{0}\right)=\mathrm{1} \\ $$$$\mathrm{and}\:\mathrm{y}\left(\mathrm{0}\right)=\:\mathrm{0}.\:\mathrm{Find}\:\mathrm{the}\:\mathrm{solution} \\ $$ Answered by bobhans last updated on 24/Feb/21…
Question Number 68243 by mathmax by abdo last updated on 07/Sep/19 $${let}\:{f}\left({x}\right)\:={arctan}\left({ax}\:+\mathrm{1}\right)\:\:{with}\:{a}\:{real} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{f}^{\left({n}\right)} \left({x}\right)\:{and}\:{f}^{\left({n}\right)} \left(\mathrm{0}\right) \\ $$$$\left.\mathrm{2}\right)\:{developp}\:{f}\:{at}\:{integr}\:{serie} \\ $$$$\left.\mathrm{3}\right)\:{calculate}\:\int_{−\infty} ^{+\infty} \:\frac{{f}\left({x}\right)}{{x}^{\mathrm{2}} \:+\mathrm{4}}{dx} \\ $$…
Question Number 68240 by mathmax by abdo last updated on 07/Sep/19 $${calculate}\:\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{arctan}\left(\mathrm{3}{x}\right)−{arctan}\left(\mathrm{2}{x}\right)}{{x}}{dx} \\ $$ Commented by mathmax by abdo last updated on 08/Sep/19…
Question Number 2705 by Syaka last updated on 25/Nov/15 $${if}\:{function}\:{f}\:{satisfy}\:{form}\:: \\ $$$${f}\left({x}\right)\:=\:\left(\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}{f}\left({x}\right)\:{dx}\right){x}^{\mathrm{2}} \:+\:\left(\underset{\mathrm{0}} {\overset{\mathrm{2}} {\int}}{f}\left({x}\right)\:{dx}\right){x}\:+\:\left(\underset{\mathrm{0}} {\overset{\mathrm{3}} {\int}}{f}\left({x}\right)\:{dx}\right)\:+\:\mathrm{1} \\ $$$${then}\:{the}\:{value}\:{of}\:{f}\left(\mathrm{4}\right)\:{is}…..\:? \\ $$ Answered by…
Question Number 68241 by mathmax by abdo last updated on 07/Sep/19 $${calculate}\:\int\int_{{w}} \:\:\:\left({x}^{\mathrm{2}} −\mathrm{2}{y}^{\mathrm{2}} \right)\sqrt{{x}^{\mathrm{2}} +\mathrm{3}{y}^{\mathrm{2}} }{dxdy} \\ $$$${with}\:{w}\:=\left\{\left({x},{y}\right)\in{R}^{\mathrm{2}} /\:\mathrm{0}\leqslant{x}\leqslant\mathrm{1}\:\:{and}\:\mathrm{1}\leqslant{y}\leqslant\mathrm{2}\right\} \\ $$ Commented by mathmax…
Question Number 133773 by mohammad17 last updated on 24/Feb/21 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 68238 by mathmax by abdo last updated on 07/Sep/19 $${let}\:\:{f}\left({x}\right)=\left({x}^{\mathrm{2}} −\mathrm{3}{x}\right){arctan}\left(\mathrm{2}{x}+\mathrm{1}\right) \\ $$$$\left.\mathrm{1}\right)\:{determine}\:{f}^{\left({n}\right)} \left({x}\right)\:\:{and}\:{f}^{\left({n}\right)} \left(\mathrm{0}\right) \\ $$$$\left.\mathrm{2}\right){developp}\:{f}\:{at}\:{integr}\:{serie} \\ $$$$\left.\mathrm{3}\right)\:{calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} {f}\left({x}\right){dx} \\ $$…
Question Number 133772 by mathocean1 last updated on 24/Feb/21 $${Three}\:{devices}\:{A};\:{B}\:;{C}\:{shine}\:{like}\:{that}: \\ $$$${A}\:{shines}\:{every}\:\mathrm{25}\:{minutes} \\ $$$${B}\:{shines}\:{every}\:\mathrm{30}\:{minutes} \\ $$$${C}\:{shines}\:{every}\:\mathrm{35}\:{minutes}. \\ $$$${The}\:{three}\:{devices}\:{shined}\:{simultaneous}, \\ $$$$\left({at}\:{the}\:{same}\:{time}\right)\:{at}\:\mathrm{10}\:{pm}. \\ $$$${At}\:{which}\:{time}\:{will}\:{they}\:{shine}\:{simultaneous}\: \\ $$$${for}\:{the}\:{first}\:{time}\:{after}\:{midnight}? \\…
Question Number 68239 by mathmax by abdo last updated on 07/Sep/19 $${let}\:{f}\left({x}\right)\:={e}^{−\mathrm{2}{x}} {ln}\left(\mathrm{1}+{x}^{\mathrm{2}} \right) \\ $$$${developp}\:{f}\:{at}\:{integr}\:{serie}. \\ $$ Commented by mathmax by abdo last updated…
Question Number 2702 by Filup last updated on 25/Nov/15 $$\zeta\left({s}\right)=\underset{{i}=\mathrm{1}} {\overset{\infty} {\sum}}{i}^{−{s}} =\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}^{{s}} }+\frac{\mathrm{1}}{\mathrm{3}^{{s}} }+… \\ $$$$ \\ $$$$\mathrm{Is}\:\zeta\left({s}\right)>\mathrm{0}\forall{s}\in\mathbb{R}? \\ $$$$\mathrm{1}.\:\mathrm{Can}\:\mathrm{you}\:\mathrm{prove},\:\mathrm{or}\:\mathrm{prove}\:\mathrm{otherwise}? \\ $$$$\mathrm{2}.\:\mathrm{If}\:\zeta\left({s}\right)>{n},\:{s}\in\mathbb{R},\:\mathrm{what}\:\mathrm{are}\:\mathrm{the}\:\mathrm{bounds} \\ $$$$\mathrm{of}\:{s}?\:\mathrm{i}.\mathrm{e}.\:\:{a}\leqslant{s}\leqslant{b}\::\:\zeta\left({s}\right)>{n}…