Menu Close

Author: Tinku Tara

for-the-function-z-xtan-1-y-x-ysin-1-x-y-2-then-the-value-of-x-z-x-y-z-y-

Question Number 214726 by universe last updated on 18/Dec/24 $$\mathrm{for}\:\mathrm{the}\:\mathrm{function}\:{z}\:=\:{x}\mathrm{tan}^{−\mathrm{1}} \left(\frac{{y}}{{x}}\right)+{y}\mathrm{sin}^{−\mathrm{1}} \left(\frac{{x}}{{y}}\right)+\mathrm{2} \\ $$$$\mathrm{then}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:{x}\frac{\partial{z}}{\partial{x}}+{y}\frac{\partial{z}}{\partial{y}}=?\: \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com

Question-214753

Question Number 214753 by BaliramKumar last updated on 18/Dec/24 Commented by BaliramKumar last updated on 19/Dec/24 $${solve}\:{by}\:{computer}\:{programming}\: \\ $$$${for}\:{any}\:{primitive}\:{triplets} \\ $$$${ex}.\:\:\:\:\left({l},\:{b},\:{h}\right)\:\equiv\:\left(\mathrm{2},\:\mathrm{2},\:\mathrm{1}\right)\:\:\&\:\left({a},\:{b},\:{c}\right)\:\equiv\:\left(\mathrm{3},\:\mathrm{4},\:\mathrm{5}\right) \\ $$ Terms of…

x-

Question Number 214712 by efronzo1 last updated on 17/Dec/24 $$\:\:\:\cancel{\underline{\underbrace{\boldsymbol{{x}}}}} \\ $$ Answered by mr W last updated on 17/Dec/24 $${r}^{\mathrm{2}} −\mathrm{3}{r}+\mathrm{2}=\mathrm{0} \\ $$$$\left({r}−\mathrm{1}\right)\left({r}−\mathrm{2}\right)=\mathrm{0} \\…

Find-matrix-B-if-given-AB-BA-0-0-0-0-where-A-5-3-5-3-and-B-0-0-0-0-

Question Number 214713 by efronzo1 last updated on 17/Dec/24 $$\:\:\mathrm{Find}\:\mathrm{matrix}\:\mathrm{B}\:\mathrm{if}\:\mathrm{given}\:\mathrm{AB}=\mathrm{BA}=\begin{pmatrix}{\mathrm{0}\:\:\mathrm{0}}\\{\mathrm{0}\:\:\mathrm{0}}\end{pmatrix} \\ $$$$\:\:\mathrm{where}\:\mathrm{A}=\:\begin{pmatrix}{\mathrm{5}\:\:\:\mathrm{3}}\\{\mathrm{5}\:\:\:\mathrm{3}}\end{pmatrix}\:\mathrm{and}\:\mathrm{B}\:\neq\:\begin{pmatrix}{\mathrm{0}\:\:\:\mathrm{0}}\\{\mathrm{0}\:\:\:\mathrm{0}}\end{pmatrix} \\ $$$$ \\ $$ Answered by golsendro last updated on 18/Dec/24 $$\:\mathrm{det}\left(\mathrm{A}\right)=\:\mathrm{15}−\mathrm{15}=\mathrm{0} \\…

Question-214683

Question Number 214683 by MATHEMATICSAM last updated on 16/Dec/24 Commented by MATHEMATICSAM last updated on 16/Dec/24 $$\mathrm{Circles}\:\mathrm{C1}\:\mathrm{and}\:\mathrm{C2}\:\mathrm{have}\:\mathrm{equal}\:\mathrm{radii}\:\mathrm{and} \\ $$$$\mathrm{are}\:\mathrm{tangent}\:\mathrm{to}\:\mathrm{the}\:\mathrm{same}\:\mathrm{line}\:\mathrm{XY}.\:\mathrm{Circle} \\ $$$$\mathrm{C3}\:\mathrm{is}\:\mathrm{tangent}\:\mathrm{to}\:\mathrm{C1}\:\mathrm{and}\:\mathrm{C2}.\:\mathrm{Find} \\ $$$$\mathrm{distance}\:{h},\:\mathrm{from}\:\mathrm{the}\:\mathrm{centre}\:\mathrm{of}\:\mathrm{C3}\:\mathrm{to}\:\mathrm{line} \\ $$$$\mathrm{XY}\:\mathrm{in}\:\mathrm{terms}\:\mathrm{of}\:{x}\:\mathrm{and}\:\mathrm{radii}\:\mathrm{of}\:\mathrm{the}\:\mathrm{circles}.…

solve-partial-differantial-equation-x-f-x-y-x-y-f-x-y-y-f-x-y-ln-x-2-y-2-2-f-x-y-x-2-2-f-x-y-y-2-0-

Question Number 214678 by issac last updated on 16/Dec/24 $$\mathrm{solve} \\ $$$$\mathrm{partial}\:\mathrm{differantial}\:\mathrm{equation} \\ $$$${x}\frac{\partial{f}\left({x},{y}\right)}{\partial{x}}+{y}\frac{\partial{f}\left({x},{y}\right)}{\partial{y}}={f}\left({x},{y}\right)\mathrm{ln}\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right) \\ $$$$\frac{\partial^{\mathrm{2}} {f}\left({x},{y}\right)}{\partial{x}^{\mathrm{2}} }+\frac{\partial^{\mathrm{2}} {f}\left({x},{y}\right)}{\partial{y}^{\mathrm{2}} }=\mathrm{0} \\ $$ Terms…