Menu Close

Author: Tinku Tara

I-have-4-collinear-points-A-a-0-B-b-0-C-c-0-and-D-d-0-where-a-b-c-d-gt-0-Find-a-point-E-x-y-such-that-the-following-expression-is-minimised-2-AE-BE-CE-DE-

Question Number 2672 by Yozzi last updated on 24/Nov/15 $${I}\:{have}\:\mathrm{4}\:{collinear}\:{points}\:{A}\left({a},\mathrm{0}\right), \\ $$$${B}\left({b},\mathrm{0}\right),\:{C}\left({c},\mathrm{0}\right)\:{and}\:{D}\left({d},\mathrm{0}\right)\:{where}\: \\ $$$$\forall{a},{b},{c},{d}>\mathrm{0}.\:{Find}\:{a}\:{point}\:{E}\left({x},{y}\right)\:{such} \\ $$$${that}\:{the}\:{following}\:{expression}\:{is} \\ $$$${minimised}: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{2}\left({AE}+{BE}+{CE}+{DE}\right). \\ $$ Commented by Rasheed…

Question-68203

Question Number 68203 by peter frank last updated on 07/Sep/19 Commented by Cmr 237 last updated on 07/Sep/19 $$\eth\mathrm{f}=\frac{\eth\mathrm{f}}{\eth\mathrm{x}}+\frac{\eth\mathrm{f}}{\eth\mathrm{y}}+\frac{\eth\mathrm{f}}{\eth\mathrm{z}} \\ $$$$\:\:\:\:=\mathrm{2xy}+\mathrm{cosh}\left(\mathrm{yz}\right)+\mathrm{x}^{\mathrm{2}} +\mathrm{xzsinh}\left(\mathrm{yz}\right)+\mathrm{xysinh}\left(\mathrm{yz}\right) \\ $$ Commented…

Question-133738

Question Number 133738 by mathlove last updated on 23/Feb/21 Answered by Ar Brandon last updated on 24/Feb/21 $$\underset{\mathrm{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{ln}\left(\mathrm{3x}+\mathrm{1}\right)}{\mathrm{2x}}=\underset{\mathrm{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{3x}−\frac{\mathrm{9x}^{\mathrm{2}} }{\mathrm{2}}+\epsilon\left(\mathrm{x}\right)}{\mathrm{2x}}=\frac{\mathrm{3}}{\mathrm{2}} \\ $$ Commented by…

how-do-we-caculate-ln-tanx-dx-

Question Number 133734 by Abdoulaye last updated on 23/Feb/21 $${how}\:{do}\:{we}\:{caculate}\:\int{ln}\left({tanx}\right){dx}\:? \\ $$ Answered by mathmax by abdo last updated on 24/Feb/21 $$\mathrm{f}\left(\mathrm{x}\right)=\int_{\frac{\pi}{\mathrm{4}}} ^{\mathrm{x}} \mathrm{ln}\left(\mathrm{tanx}\right)\mathrm{dx}\:\Rightarrow\mathrm{f}\left(\mathrm{x}\right)=_{\mathrm{tanx}=\mathrm{t}} \:\:\:\int_{\mathrm{1}}…

Prove-by-contradiction-that-there-are-no-whole-number-solutions-x-y-z-to-the-equation-z-2-x-2-y-2-where-both-x-and-y-are-odd-

Question Number 2655 by Yozzi last updated on 24/Nov/15 $${Prove}\:{by}\:{contradiction}\:{that}\:{there} \\ $$$${are}\:{no}\:{whole}\:{number}\:{solutions}\:\left({x},{y},{z}\right) \\ $$$${to}\:{the}\:{equation}\:{z}^{\mathrm{2}} ={x}^{\mathrm{2}} +{y}^{\mathrm{2}} \\ $$$${where}\:{both}\:{x}\:{and}\:{y}\:{are}\:{odd}. \\ $$ Answered by prakash jain last…

Question-68191

Question Number 68191 by peter frank last updated on 06/Sep/19 Answered by mind is power last updated on 06/Sep/19 $${sin}\left({a}−{b}\right)={sin}\left({a}\right){cos}\left({b}\right)−{cos}\left({a}\right){sin}\left({b}\right) \\ $$$$\frac{{sin}\left({a}−{b}\right)}{{cos}\left({a}\right){cos}\left({b}\right)}={tg}\left({a}\right)−{tg}\left({b}\right) \\ $$$$\Rightarrow\frac{{sin}\left({a}−{b}\right)}{{cos}\left({a}\right){cos}\left({b}\right)}={tg}\left({b}\right)\left({k}−\mathrm{1}\right) \\…