Menu Close

Author: Tinku Tara

n-1-cos-pi-e-n-n-4-

Question Number 133708 by Dwaipayan Shikari last updated on 23/Feb/21 $$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{cos}\left(\left(\pi+{e}\right){n}\right)}{{n}^{\mathrm{4}} } \\ $$ Answered by mindispower last updated on 24/Feb/21 $$\underset{{n}\geqslant\mathrm{1}} {\sum}\frac{{sin}\left({nx}\right)}{{n}}={Im}\:\underset{{n}\geqslant\mathrm{1}}…

A-test-consists-of-four-questions-each-of-which-contains-five-alternative-answers-one-of-which-is-correct-The-test-pass-condition-is-at-least-four-correct-answers-A-student-not-knowing-the-test-su

Question Number 133696 by Mikael_786 last updated on 23/Feb/21 $$\mathrm{A}\:\mathrm{test}\:\mathrm{consists}\:\mathrm{of}\:\mathrm{four}\:\mathrm{questions} \\ $$$$\mathrm{each}\:\mathrm{of}\:\mathrm{which}\:\mathrm{contains}\:\mathrm{five}\:\mathrm{alternative} \\ $$$$\mathrm{answers},\:\mathrm{one}\:\mathrm{of}\:\mathrm{which}\:\mathrm{is}\:\mathrm{correct}. \\ $$$$\mathrm{The}\:\mathrm{test}\:\mathrm{pass}\:\mathrm{condition}\:\mathrm{is}\:\mathrm{at}\:\mathrm{least} \\ $$$$\mathrm{four}\:\mathrm{correct}\:\mathrm{answers}.\:\mathrm{A}\:\mathrm{student},\:\mathrm{not} \\ $$$$\mathrm{knowing}\:\mathrm{the}\:\mathrm{test}\:\mathrm{subject},\:\mathrm{scored}\:\mathrm{the} \\ $$$$\mathrm{answers}\:\mathrm{randomly}.\mathrm{How}\:\mathrm{is}\:\mathrm{the} \\ $$$$\mathrm{probability}\:\mathrm{for}\:\mathrm{the}\:\mathrm{student}\:\mathrm{to}\:\mathrm{pass}? \\…

In-my-textbook-its-written-In-applying-the-nth-term-test-we-can-see-that-n-1-1-n-1-diverges-because-lim-n-1-n-1-does-not-exist-But-then-why-n-1-1-n-1-1-n-2-

Question Number 68161 by Learner-123 last updated on 06/Sep/19 $${In}\:{my}\:{textbook}\:{its}\:{written}: \\ $$$${In}\:{applying}\:{the}\:{nth}−{term}\:{test}\:{we}\: \\ $$$${can}\:{see}\:{that}: \\ $$$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{{n}+\mathrm{1}} \:{diverges}\:{because}\: \\ $$$${lim}_{{n}\rightarrow\infty} \left(−\mathrm{1}\right)^{{n}+\mathrm{1}} \:{does}\:{not}\:{exist}. \\ $$$${But}\:{then}\:{why}\:\underset{{n}=\mathrm{1}}…

Old-question-related-to-greatest-int-function-lim-x-0-1-x-1-1-1-lim-x-0-1-x-

Question Number 2624 by prakash jain last updated on 23/Nov/15 $$\mathrm{Old}\:\mathrm{question}\:\mathrm{related}\:\mathrm{to}\:\mathrm{greatest}\:\mathrm{int}\:\mathrm{function}. \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\lfloor\mathrm{1}+{x}\rfloor=\mathrm{1} \\ $$$$\lfloor\mathrm{1}\rfloor=\mathrm{1} \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\lfloor\mathrm{1}−{x}\rfloor=? \\ $$ Answered by Filup last…

sin1-e-sin-2-2e-2-sin-3-3e-3-sin-4-4e-4-tan-1-sin-1-cos-1-e-

Question Number 133692 by Dwaipayan Shikari last updated on 23/Feb/21 $$\frac{{sin}\mathrm{1}}{{e}}−\frac{{sin}\left(\mathrm{2}\right)}{\mathrm{2}{e}^{\mathrm{2}} }+\frac{{sin}\left(\mathrm{3}\right)}{\mathrm{3}{e}^{\mathrm{3}} }−\frac{{sin}\left(\mathrm{4}\right)}{\mathrm{4}{e}^{\mathrm{4}} }+…={tan}^{−\mathrm{1}} \left(\frac{{sin}\left(\mathrm{1}\right)}{{cos}\left(\mathrm{1}\right)+{e}}\right) \\ $$ Commented by Dwaipayan Shikari last updated on 23/Feb/21…

If-you-have-n-non-parallel-lines-in-a-plane-how-many-points-of-intersection-are-there-

Question Number 2621 by Yozzi last updated on 23/Nov/15 $${If}\:{you}\:{have}\:{n}\:{non}−{parallel} \\ $$$${lines}\:{in}\:{a}\:{plane},\:{how}\:{many}\:{points} \\ $$$${of}\:{intersection}\:{are}\:{there}? \\ $$ Answered by prakash jain last updated on 23/Nov/15 $$\mathrm{Choose}\:\mathrm{any}\:\mathrm{2}\:\mathrm{lines}\:\mathrm{and}\:\mathrm{we}\:\mathrm{get}\:\mathrm{point}\:\mathrm{of}…

The-sums-of-the-first-n-terms-of-two-AP-s-are-in-the-ratio-3n-31-5n-3-Show-that-their-9-th-terms-are-equal-

Question Number 2619 by Rasheed Soomro last updated on 23/Nov/15 $${The}\:{sums}\:{of}\:{the}\:{first}\:\:{n}\:\:\:{terms}\:{of}\:{two}\:{AP}\:'{s}\:{are} \\ $$$${in}\:{the}\:{ratio}\:\:\mathrm{3}{n}+\mathrm{31}\::\:\:\mathrm{5}{n}−\mathrm{3}\:.\:{Show}\:{that}\:{their}\:\mathrm{9}^{{th}} \:{terms} \\ $$$${are}\:{equal}. \\ $$ Commented by Yozzi last updated on 24/Nov/15…