Menu Close

Author: Tinku Tara

1-3-y-5-2-6-y-1-3-y-3-

Question Number 133669 by Study last updated on 23/Feb/21 $$\frac{\mathrm{1}}{\mathrm{3}}{y}−\mathrm{5}\left\{−\mathrm{2}\left[\mathrm{6}\left({y}−\frac{\mathrm{1}}{\mathrm{3}}−{y}\right]\right\}\boldsymbol{\div}\mathrm{3}=?\right. \\ $$ Commented by Ar Brandon last updated on 23/Feb/21 ���� Commented by Study last…

2x-2-3x-2-x-1-2-

Question Number 133668 by Study last updated on 23/Feb/21 $$\mathrm{2}{x}×−\mathrm{2}\left\{\mathrm{3}{x}−\left(\mathrm{2}+{x}\right)−\mathrm{1}\right\}\boldsymbol{\div}\mathrm{2}=? \\ $$ Commented by Study last updated on 24/Feb/21 $${why}\:{you}\:{not}\:{ans}\:{me}? \\ $$ Terms of Service…

Question-68132

Question Number 68132 by mr W last updated on 05/Sep/19 Commented by kaivan.ahmadi last updated on 05/Sep/19 $${a}+\beta+\theta=\mathrm{180}\:\:\:\left(\mathrm{1}\right) \\ $$$$\alpha+\beta−{a}=\mathrm{0}\:\:\:\:\:\left(\mathrm{2}\right) \\ $$$$\mathrm{2}\alpha−\mathrm{2}\theta+{b}=\mathrm{0}\:\:\:\left(\mathrm{3}\right) \\ $$$$\left(\mathrm{3}\right)−\left(\mathrm{2}\right):\:\alpha−\mathrm{2}\theta−\beta+\left({a}+{b}\right)=\mathrm{0}\Rightarrow\mathrm{2}\theta+\beta−\alpha=\mathrm{120}\:\:\:\left(\mathrm{4}\right) \\…

Question-133664

Question Number 133664 by shaker last updated on 23/Feb/21 Answered by liberty last updated on 23/Feb/21 $$\mathrm{partial}\:\mathrm{fraction} \\ $$$$\frac{\mathrm{1}}{\left(\mathrm{x}+\mathrm{1}\right)^{\mathrm{2}} \left(\mathrm{x}^{\mathrm{2}} +\mathrm{1}\right)}\:=\:\frac{\mathrm{A}}{\mathrm{x}+\mathrm{1}}+\frac{\mathrm{B}}{\left(\mathrm{x}+\mathrm{1}\right)^{\mathrm{2}} }+\frac{\mathrm{Cx}+\mathrm{D}}{\mathrm{x}^{\mathrm{2}} +\mathrm{1}} \\ $$$$\Leftrightarrow\:\mathrm{1}=\left(\mathrm{x}+\mathrm{1}\right)\left(\mathrm{x}^{\mathrm{2}}…

prove-that-picotan-pi-1-n-1-2-2-n-2-with-R-Z-prove-also-that-for-t-0-cotan-t-1-t-n-1-2t-t-2-n-2-pi-2-

Question Number 68129 by mathmax by abdo last updated on 05/Sep/19 $${prove}\:{that}\:\pi{cotan}\left(\alpha\pi\right)=\frac{\mathrm{1}}{\alpha}\:+\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{2}\alpha}{\alpha^{\mathrm{2}} −{n}^{\mathrm{2}} } \\ $$$${with}\:\alpha\:\in{R}−{Z}\:\:. \\ $$$${prove}\:{also}\:{that}\:\:\:{for}\:{t}\neq\mathrm{0} \\ $$$${cotan}\left({t}\right)\:=\frac{\mathrm{1}}{{t}}\:+\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{\mathrm{2}{t}}{{t}^{\mathrm{2}} −{n}^{\mathrm{2}}…

Question-68122

Question Number 68122 by TawaTawa last updated on 05/Sep/19 Commented by TawaTawa last updated on 05/Sep/19 $$\mathrm{Please}\:\mathrm{i}\:\mathrm{don}'\mathrm{t}\:\mathrm{understand}\:\mathrm{the}\:\mathrm{workings}\:\mathrm{here}.\:\:\mathrm{Help}\:\mathrm{me}\:\mathrm{explain}\:\mathrm{please} \\ $$ Answered by mind is power last…