Menu Close

Author: Tinku Tara

App-Updates-We-have-updated-the-app-with-below-changes-ad-banner-removed-from-all-screens-This-provides-larger-screen-area-for-equation-writing-and-avoids-distraction-confirmation-on-d

Question Number 2562 by Tinku Tara last updated on 22/Nov/15 $$\mathrm{App}\:\mathrm{Updates}: \\ $$$$\mathrm{We}\:\mathrm{have}\:\mathrm{updated}\:\mathrm{the}\:\mathrm{app}\:\mathrm{with}\:\mathrm{below}\:\mathrm{changes}: \\ $$$$\bullet\:\boldsymbol{\mathrm{ad}}\:\boldsymbol{\mathrm{banner}}\:\boldsymbol{\mathrm{removed}}\:\boldsymbol{\mathrm{from}}\:\boldsymbol{\mathrm{all}}\:\boldsymbol{\mathrm{screens}} \\ $$$$\:\:\:\:\mathrm{This}\:\mathrm{provides}\:\mathrm{larger}\:\mathrm{screen}\:\mathrm{area}\:\mathrm{for} \\ $$$$\:\:\:\:\:\mathrm{equation}\:\mathrm{writing}\:\mathrm{and}\:\mathrm{avoids}\:\mathrm{distraction}. \\ $$$$\bullet\:\boldsymbol{\mathrm{confirmation}}\:\boldsymbol{\mathrm{on}}\:\boldsymbol{\mathrm{delete}}\:\boldsymbol{\mathrm{posts}}\:\boldsymbol{\mathrm{on}}\:\boldsymbol{\mathrm{Q}}\:\boldsymbol{\mathrm{and}}\:\boldsymbol{\mathrm{A}}\:\boldsymbol{\mathrm{forum}} \\ $$ Commented by…

dx-pi-e-x-2-1-x-

Question Number 68094 by mhmd last updated on 04/Sep/19 $$\int{dx}/\sqrt[{{x}}]{\left(\pi+{e}\right)^{{x}^{\mathrm{2}} } }\: \\ $$ Answered by MJS last updated on 05/Sep/19 $$\int\frac{{dx}}{\:\sqrt[{{x}}]{\left(\pi+\mathrm{e}\right)^{{x}^{\mathrm{2}} } }}=\int\frac{{dx}}{\left(\pi+\mathrm{e}\right)^{{x}} }=−\frac{\mathrm{1}}{\left(\pi+\mathrm{e}\right)^{{x}}…

n-1-n-2-1-n-2-n-1-4n-2-4n-2-4n-2-4n-1-

Question Number 133628 by Ñï= last updated on 23/Feb/21 $$\underset{{n}=\mathrm{1}} {\overset{\infty} {\prod}}\left(\frac{{n}^{\mathrm{2}} +\mathrm{1}}{{n}^{\mathrm{2}} }\right)=? \\ $$$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\prod}}\left(\frac{\mathrm{4}{n}^{\mathrm{2}} −\mathrm{4}{n}+\mathrm{2}}{\mathrm{4}{n}^{\mathrm{2}} −\mathrm{4}{n}+\mathrm{1}}\right)=? \\ $$ Answered by Dwaipayan…

x-1-x-1-3-dx-

Question Number 68095 by mhmd last updated on 04/Sep/19 $$\int\sqrt{{x}}/\mathrm{1}+\sqrt[{\mathrm{3}}]{{x}\:}\:{dx} \\ $$ Answered by MJS last updated on 05/Sep/19 $$\int\frac{{x}^{\mathrm{1}/\mathrm{2}} }{\mathrm{1}+{x}^{\mathrm{1}/\mathrm{3}} }{dx}= \\ $$$$\:\:\:\:\:\left[{t}={x}^{\mathrm{1}/\mathrm{6}} \:\rightarrow\:{dx}=\mathrm{6}{x}^{\mathrm{5}/\mathrm{6}}…

y-bx-ay-ax-by-

Question Number 133631 by liberty last updated on 23/Feb/21 $$\mathrm{y}'\:=\:\frac{\mathrm{bx}+\mathrm{ay}}{\mathrm{ax}+\mathrm{by}} \\ $$ Answered by TheSupreme last updated on 23/Feb/21 $${caso}\:\mathrm{1}:\:{b}=\mathrm{0}\: \\ $$$${y}'=\frac{{ay}}{{ax}}=\frac{{y}}{{x}} \\ $$$${ln}\left({y}\right)={ln}\left({x}\right)+{c} \\…

For-a-function-y-f-x-inflection-points-stationary-points-are-when-df-dx-0-For-a-function-z-f-x-y-can-you-find-these-points-through-a-similar-method-Is-it-something-like-f-x-0-and-f-

Question Number 2548 by Filup last updated on 22/Nov/15 $$\mathrm{For}\:\mathrm{a}\:\mathrm{function}\:{y}={f}\left({x}\right), \\ $$$$\mathrm{inflection}\:\mathrm{points}/\mathrm{stationary}\:\mathrm{points}\:\mathrm{are} \\ $$$$\mathrm{when}\:\:\frac{{df}}{{dx}}=\mathrm{0}. \\ $$$$ \\ $$$$\mathrm{For}\:\mathrm{a}\:\mathrm{function}\:{z}={f}\left({x},\:{y}\right),\:\mathrm{can}\:\mathrm{you}\:\mathrm{find} \\ $$$$\mathrm{these}\:\mathrm{points}\:\mathrm{through}\:\mathrm{a}\:\mathrm{similar}\:\mathrm{method}? \\ $$$$ \\ $$$$\mathrm{Is}\:\mathrm{it}\:\mathrm{something}\:\mathrm{like}\:\frac{\partial{f}}{\partial{x}}=\mathrm{0}\:\mathrm{and}\:\frac{\partial{f}}{\partial{y}}=\mathrm{0}? \\…