Menu Close

Author: Tinku Tara

advanced-calculus-n-1-n-n-I-havefound-pi-4-36-

Question Number 137592 by mnjuly1970 last updated on 04/Apr/21 $$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:……{advanced}…..{calculus}…. \\ $$$$\:\:\:\:\boldsymbol{\Omega}=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\psi''\left({n}\right)}{{n}}=??? \\ $$$$\:{I}\:{havefound}\:::\:\:\Omega=−\frac{\pi^{\mathrm{4}} }{\mathrm{36}}\:\:…\:! \\ $$ Answered by Dwaipayan Shikari last updated…

For-a-positive-number-n-let-f-n-be-the-value-of-f-n-4n-4n-2-1-2n-1-2n-1-calculate-f-1-f-2-f-3-f-40-

Question Number 137588 by bramlexs22 last updated on 04/Apr/21 $${For}\:{a}\:{positive}\:{number}\:{n}\:,\:{let} \\ $$$${f}\left({n}\right)\:{be}\:{the}\:{value}\:{of}\: \\ $$$${f}\left({n}\right)=\frac{\mathrm{4}{n}+\sqrt{\mathrm{4}{n}^{\mathrm{2}} −\mathrm{1}}}{\:\sqrt{\mathrm{2}{n}+\mathrm{1}}\:+\sqrt{\mathrm{2}{n}−\mathrm{1}}} \\ $$$${calculate}\:{f}\left(\mathrm{1}\right)+{f}\left(\mathrm{2}\right)+{f}\left(\mathrm{3}\right)+…+{f}\left(\mathrm{40}\right). \\ $$ Answered by bemath last updated on…

x-1-pi-pi-1-2-pi-2-3-pi-3-4-4-5-2-6-3-7-4-x-2-x-1-x-2-x-1-

Question Number 137590 by Ñï= last updated on 04/Apr/21 $${x}=\mathrm{1}+\frac{\pi+\left(\pi+\mathrm{1}\right)^{\mathrm{2}} +\left(\pi+\mathrm{2}\right)^{\mathrm{3}} +\left(\pi+\mathrm{3}\right)^{\mathrm{4}} }{\mathrm{4}+\mathrm{5}^{\mathrm{2}} +\mathrm{6}^{\mathrm{3}} +\mathrm{7}^{\mathrm{4}} } \\ $$$$\sqrt{{x}+\mathrm{2}\sqrt{{x}−\mathrm{1}}}+\sqrt{{x}−\mathrm{2}\sqrt{{x}−\mathrm{1}}}=? \\ $$ Commented by mindispower last updated…

Find-the-cube-of-the-number-N-7-3-7-3-7-3-7-3-

Question Number 137585 by bramlexs22 last updated on 04/Apr/21 $${Find}\:{the}\:{cube}\:{of}\:{the}\:{number}\: \\ $$$${N}=\:\sqrt{\mathrm{7}\sqrt{\mathrm{3}\sqrt{\mathrm{7}\sqrt{\mathrm{3}\sqrt{\mathrm{7}\sqrt{\mathrm{3}\sqrt{\mathrm{7}\sqrt{\mathrm{3}…}}}}}}}} \\ $$ Answered by bemath last updated on 04/Apr/21 $${N}=\mathrm{7}^{\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{8}}+\frac{\mathrm{1}}{\mathrm{32}}+\frac{\mathrm{1}}{\mathrm{128}}+…} .\:\mathrm{3}^{\frac{\mathrm{1}}{\mathrm{4}}+\frac{\mathrm{1}}{\mathrm{16}}+\frac{\mathrm{1}}{\mathrm{64}}+…} \\ $$$${N}=\mathrm{7}^{\frac{\mathrm{1}/\mathrm{2}}{\mathrm{1}−\mathrm{1}/\mathrm{4}}}…

Given-a-2n-a-n-a-2-1-a-2n-1-a-n-a-2-2-and-a-7-2-0-lt-a-1-lt-1-Find-a-25-

Question Number 137584 by bramlexs22 last updated on 04/Apr/21 $${Given}\:\begin{cases}{{a}_{\mathrm{2}{n}} \:=\:{a}_{{n}} .{a}_{\mathrm{2}} \:+\mathrm{1}}\\{{a}_{\mathrm{2}{n}+\mathrm{1}} \:=\:{a}_{{n}} .{a}_{\mathrm{2}} \:−\mathrm{2}\:}\end{cases}\:{and} \\ $$$$\:\begin{cases}{{a}_{\mathrm{7}} \:=\:\mathrm{2}}\\{\mathrm{0}<{a}_{\mathrm{1}} <\mathrm{1}}\end{cases}.\:{Find}\:{a}_{\mathrm{25}} \:=? \\ $$$$ \\ $$…

Question-72048

Question Number 72048 by ahmadshahhimat775@gmail.com last updated on 23/Oct/19 Answered by mind is power last updated on 23/Oct/19 $$\mathrm{a}_{\mathrm{2}} =\frac{\mathrm{6}}{\mathrm{1}+\mathrm{3}}=\frac{\mathrm{3}}{\mathrm{2}}=\frac{\mathrm{3}.\mathrm{2}^{\mathrm{0}} }{\mathrm{2}}=\frac{\mathrm{2}+\mathrm{1}}{\mathrm{2}}=\frac{\mathrm{2}+\mathrm{2}^{\mathrm{0}} }{\mathrm{2}} \\ $$$$\mathrm{a}_{\mathrm{3}} =\frac{\mathrm{3}}{\mathrm{1}+\frac{\mathrm{3}}{\mathrm{2}}}=\frac{\mathrm{6}}{\mathrm{5}}\:=\frac{\mathrm{3}.\mathrm{2}}{\mathrm{3}.\mathrm{2}−\mathrm{1}}=\frac{\mathrm{4}+\mathrm{2}}{\mathrm{4}+\mathrm{2}−\mathrm{1}}=\frac{\mathrm{2}+\mathrm{2}^{\mathrm{2}}…

Question-72046

Question Number 72046 by aliesam last updated on 23/Oct/19 Commented by mathmax by abdo last updated on 26/Oct/19 $${let}\:{U}_{{n}} =\int_{\mathrm{0}} ^{\mathrm{1}} {nln}\left(\mathrm{1}+\left(\frac{{x}}{{n}}\right)^{\alpha} \right){dx}\:\Rightarrow{U}_{{n}} =_{\frac{{x}}{{n}}={t}} \:\:\:\int_{\mathrm{0}}…