Menu Close

Author: Tinku Tara

find-dy-dx-of-ln-sechx-lnlnx-

Question Number 2484 by John_Haha last updated on 21/Nov/15 $${find}\:{dy}/{dx}\:{of}\:{ln}\left({sechx}+{lnlnx}\right) \\ $$ Answered by Filup last updated on 21/Nov/15 $${y}=\mathrm{ln}\left(\mathrm{sech}\left({x}\right)+\mathrm{ln}\left(\mathrm{ln}\left({x}\right)\right)\right) \\ $$$$ \\ $$$$\frac{{dy}}{{dx}}=\frac{{d}\left(\mathrm{ln}\left(\mathrm{u}\right)\right)}{\mathrm{d}{x}}\:\frac{{du}}{{dx}}\:\:\:\:\:\:\:\:\:\left({chain}\:{rule}\right) \\…

2014-2013-2014-2013-2012-2011-2014-2013-2012-2011-2010-2009-2014-2013-2012-2011-2010-2009-2008-2007-4-3-2-1-

Question Number 2481 by Syaka last updated on 21/Nov/15 $$\frac{\mathrm{2014}}{\mathrm{2013}}\:+\:\frac{\mathrm{2014}}{\mathrm{2013}}\:\ast\frac{\mathrm{2012}}{\mathrm{2011}}\:+\:\frac{\mathrm{2014}}{\mathrm{2013}}\:\ast\:\frac{\mathrm{2012}}{\mathrm{2011}}\:\ast\:\frac{\mathrm{2010}}{\mathrm{2009}}\:+\:\centerdot\centerdot\centerdot\centerdot\:+\:\frac{\mathrm{2014}}{\mathrm{2013}}\:\ast\:\frac{\mathrm{2012}}{\mathrm{2011}}\:\ast\:\frac{\mathrm{2010}}{\mathrm{2009}}\:\ast\:\frac{\mathrm{2008}}{\mathrm{2007}\:}\ast\centerdot\centerdot\centerdot\ast\frac{\mathrm{4}}{\mathrm{3}}\ast\frac{\mathrm{2}}{\mathrm{1}}\:−\:\mathrm{1}\:=\:\:\:\:? \\ $$ Answered by Filup last updated on 21/Nov/15 $$\mathrm{if}\:\mathrm{by}\:''\ast''\:\mathrm{you}\:\mathrm{mean}\:''×'' \\ $$$${in}\:{form}\:\left({k}=\mathrm{2014}\right): \\ $$$$ \\…

0-3-9-x-2-dx-a-13-5-b-21-c-22-5-d-1-8-e-30-

Question Number 133541 by bemath last updated on 22/Feb/21 $$\underset{\mathrm{0}} {\overset{\mathrm{3}} {\int}}\sqrt{\mathrm{9}−\mathrm{x}^{\mathrm{2}} }\:\mathrm{dx}\:=? \\ $$$$\left(\mathrm{a}\right)\mathrm{13}.\mathrm{5}\:\:\:\:\:\:\left(\mathrm{b}\right)\mathrm{21}\:\:\:\:\:\:\left(\mathrm{c}\right)\mathrm{22}.\mathrm{5} \\ $$$$\left(\mathrm{d}\right)\mathrm{1}.\mathrm{8}\:\:\:\:\:\:\:\:\:\left(\mathrm{e}\right)\:\mathrm{30} \\ $$ Commented by MJS_new last updated on…