Question Number 133497 by Study last updated on 22/Feb/21 $${whaic}\:{is}\:{the}\:{large}\:{bracket} \\ $$$$\left\{\right\}\:?\:\:\:\:{or}\:\left[\right]\:? \\ $$ Commented by Rasheed.Sindhi last updated on 22/Feb/21 $$\left(\:\right)\:{is}\:{small}\:{brackets}. \\ $$$$\left\{\right\}\:{is}\:{middle}\:{brackets}. \\…
Question Number 67963 by mhmd last updated on 02/Sep/19 Commented by mathmax by abdo last updated on 02/Sep/19 $${generally}\:{if}\:{F}\left({x}\right)=\int_{{u}\left({x}\right)} ^{{v}\left({x}\right)} {f}\left({t}\right){dt}\:\Rightarrow{F}^{'} \left({x}\right)={v}^{'} \left({x}\right){f}\left({v}\left({x}\right)\right)−{u}^{'} \left({x}\right){f}\left({u}\left({x}\right)\right) \\…
Question Number 67960 by aseer imad last updated on 02/Sep/19 $$\frac{{d}}{{dx}}\left[{tan}^{−\mathrm{1}} \frac{\mathrm{4}{x}}{\:\sqrt{\mathrm{1}−\mathrm{4}{x}^{\mathrm{2}} }}\right] \\ $$$${or} \\ $$$$\frac{{d}}{{dx}}{tan}^{−\mathrm{1}} \left(\mathrm{2}{tan}\theta\right)\:\:\:\:\:\:\:\left[{where}\:\mathrm{2}{x}={sin}\theta\:\right] \\ $$$$\:\:\:{which}\:{comes}\:{later}\:{if}\:{done}\:{considering} \\ $$$$\mathrm{2}{x}={sin}\theta \\ $$$${please}\:{help} \\…
Question Number 67958 by hmamarques1994@gmai.com last updated on 02/Sep/19 $$\: \\ $$$$\:\underset{\boldsymbol{\mathrm{x}}\rightarrow\mathrm{2}} {\boldsymbol{\mathrm{lim}}}\left(\frac{\mathrm{7}^{\sqrt[{\mathrm{3}}]{\boldsymbol{\mathrm{log}}_{\boldsymbol{\mathrm{x}}} \left(\mathrm{256}\right)}} −\mathrm{49}}{\mathrm{2}^{−\sqrt{\mathrm{2}^{\boldsymbol{\mathrm{x}}} }} −\frac{\mathrm{1}}{\mathrm{4}}}\right)\:\approx\:? \\ $$$$\: \\ $$ Terms of Service Privacy…
Question Number 67959 by mhmd last updated on 02/Sep/19 $$\int\sqrt{{e}^{{y}^{\mathrm{2}} } \:\:}\:{dy}\:\:{pleas}\:{sir}\:{can}\:{you}\:{help}\:{me}? \\ $$ Commented by Prithwish sen last updated on 02/Sep/19 $$\mathrm{please}\:\mathrm{check}\:\mathrm{Q67942}\:\mathrm{it}\:\mathrm{has}\:\mathrm{been}\:\mathrm{done} \\ $$…
Question Number 133494 by Eric002 last updated on 22/Feb/21 $${solve}\:{without}\:{using}\:{l}'{hopital}\:{and}\:{series}\: \\ $$$$\underset{{x}\rightarrow\mathrm{8}} {\mathrm{lim}}\frac{{x}\:\sqrt[{\mathrm{3}}]{{x}}−\mathrm{16}}{{x}−\mathrm{8}} \\ $$ Answered by Olaf last updated on 22/Feb/21 $$ \\ $$$$\mathrm{X}\:=\:\frac{{x}\sqrt[{\mathrm{3}}]{{x}}−\mathrm{16}}{{x}−\mathrm{8}}…
Question Number 133489 by Study last updated on 22/Feb/21 $${x}+{y}<\mathrm{4} \\ $$$${x}−{y}<\mathrm{3} \\ $$$$\mathrm{5}{x}−{y}>\mathrm{1} \\ $$$${find}\:{the}\:{area}\:{solution}\:{of}\:{iniquality} \\ $$$${system}. \\ $$ Commented by Study last updated…
Question Number 133490 by mnjuly1970 last updated on 22/Feb/21 $$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:….\:{advnced}\:\:{calculus}…. \\ $$$$\:\:\:\:{prove}:\:\boldsymbol{\phi}=\int_{\mathrm{0}} ^{\:\infty} \frac{{sin}\left({tan}\left({x}\right)\right)}{{x}}{dx}=\frac{\pi}{\mathrm{2}}\left(\mathrm{1}−\frac{\mathrm{1}}{{e}}\right) \\ $$$$\:{prove}\:{that}:\:\boldsymbol{\Phi}=\int_{\mathrm{0}} ^{\:\infty} \frac{\mathrm{1}−{e}^{−{x}^{\mathrm{2}} } }{{x}^{\mathrm{2}} }{dx}=\sqrt{\pi} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$\:\:\:…
Question Number 133485 by rydasss last updated on 22/Feb/21 Answered by guyyy last updated on 22/Feb/21 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 133487 by mr W last updated on 22/Feb/21 Commented by mr W last updated on 22/Feb/21 $${a}\:{ball}\:{is}\:{projected}\:{along}\:{the}\:{smooth} \\ $$$${floor}\:{and}\:{returns}\:{back}\:{after}\:{two} \\ $$$${times}\:{impact}\:{with}\:{the}\:{circular}\:{wall}. \\ $$$${if}\:{the}\:{restitution}\:{coefficient}\:{is}\:{e},…