Question Number 6354 by sanusihammed last updated on 24/Jun/16 $${i}\:=\:{n}−\mathrm{1} \\ $$$$\Sigma\:\:\mathrm{3}{i}\:\:\:\:\:=\:\:\:\:\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{3}^{{n}} \:−\:\mathrm{1}\right) \\ $$$${i}\:=\:\mathrm{0} \\ $$ Commented by nburiburu last updated on 24/Jun/16 $${doesn}'{t}\:{seem}\:{well}\:{writen}:…
Question Number 6353 by sanusihammed last updated on 24/Jun/16 $$\mathrm{1}^{\mathrm{2}} \:+\:\mathrm{3}^{\mathrm{2}} \:+\:\mathrm{5}^{\mathrm{2}} \:+\:………\:+\:\left(\mathrm{2}{n}\:−\:\mathrm{1}\right)^{\mathrm{2}} \:=\:\frac{{n}}{\mathrm{3}}\left(\mathrm{4}{n}^{\mathrm{2}\:} −\:\mathrm{1}\right) \\ $$ Commented by prakash jain last updated on 24/Jun/16…
Question Number 71886 by aliesam last updated on 21/Oct/19 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 6351 by sanusihammed last updated on 24/Jun/16 $$\mathrm{1}\:+\:\mathrm{4}\:+\:\mathrm{9}\:+\:…….\:{n}^{\mathrm{2}} \:=\:\frac{{n}\left({n}\:+\:\mathrm{1}\right)\left(\mathrm{2}{n}\:+\:\mathrm{1}\right)}{\mathrm{6}} \\ $$ Commented by prakash jain last updated on 24/Jun/16 $${proving}\:{for}\:{k}+\mathrm{1}\:{assuming}\:{result}\:{for}\:{k} \\ $$$$\frac{{k}\left({k}+\mathrm{1}\right)\left(\mathrm{2}{k}+\mathrm{1}\right)}{{k}}+\left({k}+\mathrm{1}\right)^{\mathrm{2}} \\…
Question Number 137420 by mnjuly1970 last updated on 02/Apr/21 $$\:\:\:\:\:\:\:\:\:\:\:\:\:……{mathematical}\:…\:…\:…\:{analysis}\left({II}\right)….. \\ $$$$\:\:\:\:\:\:\:{prove}\:\:{that}\::: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\Omega=\int_{\:\mathbb{R}} \left(\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(−{x}^{\mathrm{2}} \right)^{{n}} }{\left({n}!\right)^{\mathrm{2}} }\right){dx}=\mathrm{1} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:…………………….. \\ $$ Commented…
Question Number 6350 by sanusihammed last updated on 24/Jun/16 $${Prove}\:{by}\:{matimatical}\:{induction} \\ $$$$\mathrm{1}\:+\:\mathrm{8}\:+\:\mathrm{27}\:+\:……\:+\:{n}^{\mathrm{3}} \:\:=\:\:\left[\frac{{n}\left({n}\:+\:\mathrm{1}\right)}{\mathrm{2}}\right]^{\mathrm{2}} \\ $$ Answered by prakash jain last updated on 24/Jun/16 $${n}=\mathrm{1} \\…
Question Number 6346 by sanusihammed last updated on 24/Jun/16 Commented by prakash jain last updated on 25/Jun/16 $$\mathrm{If}\:{a},{b},{c}\in\mathbb{R} \\ $$$$\mathrm{then}\:\mathrm{there}\:\mathrm{are}\:\mathrm{no}\:{a},{b},{c}\:\mathrm{such}\:\mathrm{that} \\ $$$$\mathrm{log}\:\frac{{a}}{{b}−{c}}=\mathrm{log}\:\frac{{b}}{{c}−{a}}=\mathrm{log}\:\frac{{c}}{{a}−{b}} \\ $$$${let}\:{there}\:\exists\:{a},{b},{c}\in\mathbb{R}\:\mathrm{satisfying}\:\mathrm{the}\:\mathrm{condition} \\…
Question Number 137419 by mnjuly1970 last updated on 02/Apr/21 $$\:\:\:\:\:\:\:………{mathematical}\:\:\:\:….\:\:\:{analysis}…….. \\ $$$$\:\:\:\:\:\:\:{evaluate}…. \\ $$$$\:\:\:\:\:\:\:\boldsymbol{\phi}=\int_{\mathrm{0}} ^{\:\infty} \frac{{e}^{\mathrm{2}\pi{x}} −{e}^{\pi{x}} }{{x}\left(\mathrm{1}+{e}^{\mathrm{2}\pi{x}} \right)\left(\mathrm{1}+{e}^{\pi{x}} \right)}{dx}=\lambda\int_{\mathrm{0}} ^{\:\mathrm{1}} {ln}\left(\Gamma\left({x}\right){dx}\right. \\ $$$$\:\:\:\:\:\:\:\:\:\:\lambda\:=\:??? \\…
Question Number 6343 by sanusihammed last updated on 24/Jun/16 $$\int{x}^{\mathrm{3}} \:\sqrt{\mathrm{1}\:−\:{x}}\:\:{dx} \\ $$ Answered by nburiburu last updated on 24/Jun/16 $${by}\:{substitution}\:{t}=\sqrt{\mathrm{1}−{x}}\Rightarrow{x}=\mathrm{1}−{t}^{\mathrm{2}} \\ $$$${dx}=−\mathrm{2}{t}\:{dt} \\ $$$${I}=\int\left(\mathrm{1}−{t}^{\mathrm{2}}…
Question Number 137412 by oustmuchiya@gmail.com last updated on 02/Apr/21 Answered by herbert last updated on 02/Apr/21 $${gradient}\:{of}\:{l}_{\mathrm{1}} \:=\:\frac{\mathrm{2}+\mathrm{4}}{\mathrm{5}+\mathrm{1}}\:=\frac{\mathrm{6}}{\mathrm{6}}=\mathrm{1} \\ $$$${but}\:{grad}\:{of}\:{l}_{\mathrm{1}} ×{l}_{\mathrm{2}} =−\mathrm{1} \\ $$$${grad}\:{of}\:{l}_{\mathrm{2}} =−\mathrm{1}…