Question Number 67744 by mathmax by abdo last updated on 31/Aug/19 $${let}\:{f}\left({x}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{sin}\left({t}^{\mathrm{2}} \right)}{\left({x}^{\mathrm{2}} \:+{t}^{\mathrm{2}} \right)^{\mathrm{2}} }{dt}\:\:{with}\:{x}>\mathrm{0} \\ $$$$\left.\mathrm{1}\right){determine}\:{a}\:{explicit}\:{form}\:{for}\:{f}\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{find}\:\:{also}\:{g}\left({x}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{sin}\left({t}^{\mathrm{2}} \right)}{\left({x}^{\mathrm{2}}…
Question Number 133282 by rexford last updated on 20/Feb/21 Answered by mr W last updated on 25/Feb/21 $$\left(\boldsymbol{{b}}×\boldsymbol{{c}}\right)×\boldsymbol{{a}} \\ $$$$=\left[\left(\mathrm{1},\mathrm{2},−\mathrm{1}\right)×\left(\mathrm{1},\mathrm{1},−\mathrm{2}\right)\right]×\left(\mathrm{2},−\mathrm{1},\mathrm{1}\right) \\ $$$$=\left(−\mathrm{3},\mathrm{1},−\mathrm{1}\right)×\left(\mathrm{2},−\mathrm{1},\mathrm{1}\right) \\ $$$$=\left(\mathrm{0},\mathrm{1},\mathrm{1}\right) \\…
Question Number 67745 by Enock last updated on 31/Aug/19 $${solve}\:{the}\:{system}\:{of}\:{equations\begin{cases}{\mathrm{3}\mid{x}−\mathrm{5}\mid+\mathrm{4}={y}}\\{\mid{y}−\mathrm{3}\mid=\mathrm{4}{x}−\mathrm{12}}\end{cases}} \\ $$ Answered by Rasheed.Sindhi last updated on 31/Aug/19 $$\begin{cases}{\mathrm{3}\mid{x}−\mathrm{5}\mid+\mathrm{4}={y}\Rightarrow{y}\geqslant\mathrm{4}}\\{\mid{y}−\mathrm{3}\mid=\mathrm{4}{x}−\mathrm{12}\Rightarrow\mathrm{4}{x}−\mathrm{12}\geqslant\mathrm{1}\Rightarrow{x}\geqslant\frac{\mathrm{13}}{\mathrm{4}}}\end{cases} \\ $$$$\left(\mathrm{i}\right)\rightarrow\left(\mathrm{ii}\right): \\ $$$$\Rightarrow\mid\:\left(\mathrm{3}\mid{x}−\mathrm{5}\mid+\mathrm{4}\right)−\mathrm{3}\:\mid=\mathrm{4}{x}−\mathrm{12} \\…
Question Number 133277 by Engr_Jidda last updated on 20/Feb/21 $${use}\:{weierstrass}\:{m}−{test}\:{and}\:{dirichlet} \\ $$$${test}\:{to}\:{confirm}\:{the}\:{uniformly}\:{covergence} \\ $$$${of}\:{the}\:{following}\:{series}\:{in}\:{the}\:{interval}\:\left[\mathrm{0},\mathrm{1}\right] \\ $$$$\left.{a}\right)\:\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{cosnx}}{{n}^{\mathrm{4}} } \\ $$$$\left.{b}\right)\:\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{cosnx}}{{n}^{\frac{\mathrm{8}}{\mathrm{7}}} } \\…
Question Number 2207 by Yozzi last updated on 08/Nov/15 $${Find}\:{the}\:{sum}\:{to}\:{n}\:{terms}\:{of}\:{the}\:{series} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{S}\left({x}\right)=\underset{{r}=\mathrm{0}} {\overset{{n}} {\sum}}{e}^{−{x}^{{r}} } . \\ $$ Commented by 123456 last updated on 09/Nov/15…
Question Number 67743 by Enock last updated on 31/Aug/19 $$\:^{} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 133279 by greg_ed last updated on 20/Feb/21 $$\boldsymbol{\mathrm{hi}},\:\boldsymbol{\mathrm{everybody}}\:! \\ $$$$\boldsymbol{\mathrm{with}}\:\boldsymbol{\mathrm{n}}\:\in\:\mathbb{N}, \\ $$$$\boldsymbol{\mathrm{prove}}\:\boldsymbol{\mathrm{that}}\::\:\exists\:\boldsymbol{\mathrm{n}}_{\mathrm{0}} \:\in\:\mathbb{N}\:/\:\forall\:\boldsymbol{\mathrm{n}}\:\geqslant\:\boldsymbol{\mathrm{n}}_{\mathrm{0}} \:,\:\boldsymbol{\mathrm{n}}^{\mathrm{2}} \:\leqslant\:\mathrm{2}^{\boldsymbol{\mathrm{n}}} . \\ $$ Terms of Service Privacy Policy…
Question Number 2205 by prakash jain last updated on 08/Nov/15 $${f}\left({x}\right)+{f}\left(\frac{{x}−\mathrm{1}}{{x}}\right)=\mathrm{1}+{x} \\ $$$${f}\left({x}\right)=? \\ $$ Commented by Yozzi last updated on 08/Nov/15 $${f}\left({x}\right)+{f}\left(\mathrm{1}−\frac{\mathrm{1}}{{x}}\right)=\mathrm{1}+{x} \\ $$$$\Rightarrow{f}^{'}…
Question Number 133275 by mr W last updated on 20/Feb/21 Commented by mr W last updated on 20/Feb/21 $${A}\:{hall}\:{with}\:{horizontal}\:{smooth}\:{floor} \\ $$$${has}\:{a}\:{parabola}\:{shaped}\:{wall}\:{as}\:{shown}. \\ $$$${A}\:{ball}\:{is}\:{projected}\:{along}\:{the}\:{floor} \\ $$$${from}\:{point}\:{A}\:{and}\:{returns}\:{back}\:{to}\:{this}…
Question Number 133268 by mnjuly1970 last updated on 20/Feb/21 $$\:\:\:\:\:\:\:\:\:\:\:\:….{calculus}… \\ $$$$\:\:{prove}:: \\ $$$$\:\:\:\boldsymbol{\phi}=\int_{−\infty} ^{\:+\infty} \frac{{dx}}{\left({x}^{\mathrm{2}} +\pi^{\mathrm{2}} \right){cosh}\left({x}\right)}=\frac{\mathrm{4}}{\boldsymbol{\pi}}\:−\mathrm{1} \\ $$$$ \\ $$ Answered by Ajetunmobi…