Menu Close

Author: Tinku Tara

Is-it-possible-to-integrate-the-following-sin-cos-d-

Question Number 2176 by Filup last updated on 06/Nov/15 $$\mathrm{Is}\:\mathrm{it}\:\mathrm{possible}\:\mathrm{to}\:\mathrm{integrate}\:\mathrm{the}\:\mathrm{following}: \\ $$$$ \\ $$$$\int\mathrm{sin}\left(\mathrm{cos}\:\theta\right){d}\theta \\ $$ Commented by 123456 last updated on 07/Nov/15 $$\mathrm{i}\:\mathrm{dont}\:\mathrm{know}\:\mathrm{if}\:\mathrm{it}\:\mathrm{help}\:\mathrm{but} \\…

Find-the-value-of-1-cos-2-10-1-sin-2-20-1-sin-2-40-

Question Number 67711 by naka3546 last updated on 30/Aug/19 $${Find}\:\:{the}\:\:{value}\:\:{of} \\ $$$$\:\:\:\:\:\:\frac{\mathrm{1}}{\mathrm{cos}^{\mathrm{2}} \left(\mathrm{10}°\right)}\:+\:\frac{\mathrm{1}}{\mathrm{sin}^{\mathrm{2}} \left(\mathrm{20}°\right)}\:+\:\frac{\mathrm{1}}{\mathrm{sin}^{\mathrm{2}} \left(\mathrm{40}°\right)}\: \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com

Question-133240

Question Number 133240 by rexford last updated on 20/Feb/21 Answered by Kunal12588 last updated on 20/Feb/21 $${r}\:\mathrm{cos}\:\gamma\:=\:\mathrm{2} \\ $$$$\mathrm{cos}\:\gamma\:=\:\frac{\mathrm{2}}{\:\sqrt{\mathrm{4}+\mathrm{1}+\mathrm{4}}}=\frac{\mathrm{2}}{\mathrm{3}} \\ $$$$\gamma\:=\:\mathrm{cos}^{−\mathrm{1}} \frac{\mathrm{2}}{\mathrm{3}} \\ $$ Answered…

Question-133242

Question Number 133242 by Kunal12588 last updated on 20/Feb/21 Commented by Kunal12588 last updated on 20/Feb/21 $$\mathrm{book}\:\mathrm{says}\:\mathrm{it}\:\mathrm{is}\:\mathrm{easy}\:\mathrm{to}\:\mathrm{show}\:\mathrm{after}\:\mathrm{that} \\ $$$$\mathrm{but}\:\mathrm{how}?\:\mathrm{also}\:\mathrm{then}\:\mathrm{we}\:\mathrm{can}\:\mathrm{prove}\:\bigtriangleup\mathrm{ADB} \\ $$$$\mathrm{is}\:\mathrm{a}\:\mathrm{36}°-\mathrm{72}°-\mathrm{72}°\:\mathrm{triangle} \\ $$ Terms of…

The-equation-of-an-ellipse-is-given-as-x-2-y-2xcot2-2-1-0-lt-lt-0-25pi-Show-that-the-minimum-and-maximum-distances-from-the-centre-to-the-circumference-of-this-ellipse-are-tan-and-cot

Question Number 2168 by Yozzi last updated on 06/Nov/15 $${The}\:{equation}\:{of}\:{an}\:{ellipse}\:{is}\:{given} \\ $$$${as}\: \\ $$$$\:\:{x}^{\mathrm{2}} +\left({y}+\mathrm{2}{xcot}\mathrm{2}\theta\right)^{\mathrm{2}} =\mathrm{1}\:\:\:\:\left(\mathrm{0}<\theta<\mathrm{0}.\mathrm{25}\pi\right). \\ $$$${Show}\:{that}\:{the}\:{minimum}\:{and}\:{maximum} \\ $$$${distances}\:{from}\:{the}\:{centre}\:{to}\:{the}\: \\ $$$${circumference}\:{of}\:{this}\:{ellipse}\:{are} \\ $$$${tan}\theta\:{and}\:{cot}\theta\:{respectively}.\: \\…

For-y-f-x-x-g-y-Therefore-x-t-t-y-t-f-t-let-r-t-x-t-y-t-rdt-tdt-f-t-dt-Does-x-t-dt-g-y-dy-and-y-t-dt-f-x-dx-

Question Number 2163 by Filup last updated on 06/Nov/15 $$\mathrm{For}:\:{y}={f}\left({x}\right)\:\rightarrow\:{x}={g}\left({y}\right) \\ $$$$\mathrm{Therefore}: \\ $$$$\begin{cases}{{x}\left({t}\right)={t}}\\{{y}\left({t}\right)={f}\left({t}\right)}\end{cases} \\ $$$$\mathrm{let}\:\boldsymbol{{r}}\left({t}\right)=\langle{x}\left({t}\right),\:{y}\left({t}\right)\rangle \\ $$$$ \\ $$$$\therefore\int\boldsymbol{{r}}{dt}=\langle\int{tdt},\:\int{f}\left({t}\right){dt}\rangle \\ $$$$ \\ $$$$\mathrm{Does}: \\…