Menu Close

Author: Tinku Tara

Question-133240

Question Number 133240 by rexford last updated on 20/Feb/21 Answered by Kunal12588 last updated on 20/Feb/21 $${r}\:\mathrm{cos}\:\gamma\:=\:\mathrm{2} \\ $$$$\mathrm{cos}\:\gamma\:=\:\frac{\mathrm{2}}{\:\sqrt{\mathrm{4}+\mathrm{1}+\mathrm{4}}}=\frac{\mathrm{2}}{\mathrm{3}} \\ $$$$\gamma\:=\:\mathrm{cos}^{−\mathrm{1}} \frac{\mathrm{2}}{\mathrm{3}} \\ $$ Answered…

Question-133242

Question Number 133242 by Kunal12588 last updated on 20/Feb/21 Commented by Kunal12588 last updated on 20/Feb/21 $$\mathrm{book}\:\mathrm{says}\:\mathrm{it}\:\mathrm{is}\:\mathrm{easy}\:\mathrm{to}\:\mathrm{show}\:\mathrm{after}\:\mathrm{that} \\ $$$$\mathrm{but}\:\mathrm{how}?\:\mathrm{also}\:\mathrm{then}\:\mathrm{we}\:\mathrm{can}\:\mathrm{prove}\:\bigtriangleup\mathrm{ADB} \\ $$$$\mathrm{is}\:\mathrm{a}\:\mathrm{36}°-\mathrm{72}°-\mathrm{72}°\:\mathrm{triangle} \\ $$ Terms of…

The-equation-of-an-ellipse-is-given-as-x-2-y-2xcot2-2-1-0-lt-lt-0-25pi-Show-that-the-minimum-and-maximum-distances-from-the-centre-to-the-circumference-of-this-ellipse-are-tan-and-cot

Question Number 2168 by Yozzi last updated on 06/Nov/15 $${The}\:{equation}\:{of}\:{an}\:{ellipse}\:{is}\:{given} \\ $$$${as}\: \\ $$$$\:\:{x}^{\mathrm{2}} +\left({y}+\mathrm{2}{xcot}\mathrm{2}\theta\right)^{\mathrm{2}} =\mathrm{1}\:\:\:\:\left(\mathrm{0}<\theta<\mathrm{0}.\mathrm{25}\pi\right). \\ $$$${Show}\:{that}\:{the}\:{minimum}\:{and}\:{maximum} \\ $$$${distances}\:{from}\:{the}\:{centre}\:{to}\:{the}\: \\ $$$${circumference}\:{of}\:{this}\:{ellipse}\:{are} \\ $$$${tan}\theta\:{and}\:{cot}\theta\:{respectively}.\: \\…

For-y-f-x-x-g-y-Therefore-x-t-t-y-t-f-t-let-r-t-x-t-y-t-rdt-tdt-f-t-dt-Does-x-t-dt-g-y-dy-and-y-t-dt-f-x-dx-

Question Number 2163 by Filup last updated on 06/Nov/15 $$\mathrm{For}:\:{y}={f}\left({x}\right)\:\rightarrow\:{x}={g}\left({y}\right) \\ $$$$\mathrm{Therefore}: \\ $$$$\begin{cases}{{x}\left({t}\right)={t}}\\{{y}\left({t}\right)={f}\left({t}\right)}\end{cases} \\ $$$$\mathrm{let}\:\boldsymbol{{r}}\left({t}\right)=\langle{x}\left({t}\right),\:{y}\left({t}\right)\rangle \\ $$$$ \\ $$$$\therefore\int\boldsymbol{{r}}{dt}=\langle\int{tdt},\:\int{f}\left({t}\right){dt}\rangle \\ $$$$ \\ $$$$\mathrm{Does}: \\…

si-g-ChineseRemainderTheorm-etermine-polynomial-p-x-such-that-p-x-8-mod-x-1-p-x-24-mod-x-3-p-x-6-mod-x-p-x-0-mod-x-2-

Question Number 67697 by Rasheed.Sindhi last updated on 30/Aug/19 $$\Cup\mathrm{si}\Cap\mathrm{g}\:\mathrm{ChineseRemainderTheorm} \\ $$$$\partial\mathrm{etermine}\:\mathrm{polynomial}\:\mathrm{p}\left(\mathrm{x}\right)\:\mathrm{such}\:\mathrm{that} \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\mathrm{p}\left(\mathrm{x}\right)\equiv\mathrm{8}\left(\mathrm{mod}\:\mathrm{x}+\mathrm{1}\right) \\ $$$$\:\:\:\:\:\:\:\:\mathrm{p}\left(\mathrm{x}\right)\equiv−\mathrm{24}\left(\mathrm{mod}\:\mathrm{x}+\mathrm{3}\right) \\ $$$$\:\:\:\:\:\:\:\:\mathrm{p}\left(\mathrm{x}\right)\equiv\mathrm{6}\left(\mathrm{mod}\:\mathrm{x}\right) \\ $$$$\:\:\:\:\:\:\:\:\mathrm{p}\left(\mathrm{x}\right)\equiv\mathrm{0}\left(\mathrm{mod}\:\mathrm{x}+\mathrm{2}\right) \\ $$$$ \\…

Suppose-that-y-n-satisfies-the-equations-1-x-2-d-2-y-n-dx-2-x-dy-n-dx-n-2-y-0-y-n-1-1-y-n-x-1-n-y-n-x-If-x-cos-obtain-y-n-as-afunction-of-

Question Number 2159 by Yozzis last updated on 05/Nov/15 $${Suppose}\:{that}\:{y}_{{n}\:} \:{satisfies}\:{the}\:{equations}\: \\ $$$$\left(\mathrm{1}−{x}^{\mathrm{2}} \right)\frac{{d}^{\mathrm{2}} {y}_{{n}} }{{dx}^{\mathrm{2}} }−{x}\frac{{dy}_{{n}} }{{dx}}+{n}^{\mathrm{2}} {y}=\mathrm{0},\:{y}_{{n}} \left(\mathrm{1}\right)=\mathrm{1} \\ $$$${y}_{{n}} \left({x}\right)=\left(−\mathrm{1}\right)^{{n}} {y}_{{n}} \left(−{x}\right).…