Menu Close

Author: Tinku Tara

advanced-calculus-prove-that-n-0-n-1-2-n-1-2-2-n-n-2pi-ln-2-

Question Number 133228 by mnjuly1970 last updated on 20/Feb/21 $$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:….{advanced}\:\:\:\:{calculus}…. \\ $$$$\:\:\:{prove}\:\:{that}\::: \\ $$$$\:\:\:\:\:\:\:\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\Gamma\left({n}+\frac{\mathrm{1}}{\mathrm{2}}\right)\psi\left({n}+\frac{\mathrm{1}}{\mathrm{2}}\right)}{\mathrm{2}^{{n}} .{n}!}=−\sqrt{\mathrm{2}\pi}\:\left(\gamma+{ln}\left(\mathrm{2}\right)\right)…. \\ $$$$ \\ $$ Answered by Dwaipayan Shikari…

Find-the-ratio-over-one-revolution-of-the-distance-moved-by-a-wheel-rolling-on-a-flat-surface-to-the-distance-traced-out-by-a-point-on-its-circumference-

Question Number 2158 by Yozzis last updated on 05/Nov/15 $${Find}\:{the}\:{ratio},\:{over}\:{one}\:{revolution},\:{of}\:{the}\:{distance}\:{moved}\:{by} \\ $$$${a}\:{wheel}\:{rolling}\:{on}\:{a}\:{flat}\:{surface}\:{to}\:{the}\:{distance}\:{traced}\:{out}\:{by} \\ $$$${a}\:{point}\:{on}\:{its}\:{circumference}.\: \\ $$ Commented by ssahoo last updated on 06/Nov/15 $$\mathrm{Wheel}\:\mathrm{distance}=\mathrm{2}\pi{r} \\…

Give-S-n-n-1-2-n-1-k-1-n-2-k-k-Find-lim-n-S-n-

Question Number 133231 by SOMEDAVONG last updated on 20/Feb/21 $$\mathrm{Give}\:\mathrm{S}_{\mathrm{n}} =\frac{\mathrm{n}+\mathrm{1}}{\mathrm{2}^{\mathrm{n}+\mathrm{1}} }\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{n}} {\sum}}\frac{\mathrm{2}^{\mathrm{k}} }{\mathrm{k}}\:\:.\mathrm{Find}\:\underset{\mathrm{n}\rightarrow+\propto} {\mathrm{lim}S}_{\mathrm{n}} \:. \\ $$ Answered by Ar Brandon last updated…

Evaluate-1-2-3-1-3-3-2-4-3-3-by-considering-the-series-expansion-of-an-expression-of-the-form-P-x-e-x-where-P-x-is-a-suitably-chosen-polynomial-in-x-

Question Number 2157 by Yozzi last updated on 05/Nov/15 $${Evaluate}\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{1}+\frac{\mathrm{2}^{\mathrm{3}} }{\mathrm{1}!}+\frac{\mathrm{3}^{\mathrm{3}} }{\mathrm{2}!}+\frac{\mathrm{4}^{\mathrm{3}} }{\mathrm{3}!}+… \\ $$$${by}\:{considering}\:{the}\:{series}\:{expansion} \\ $$$${of}\:{an}\:{expression}\:{of}\:{the}\:{form}\:{P}\left({x}\right){e}^{{x}} \\ $$$${where}\:{P}\left({x}\right)\:{is}\:{a}\:{suitably}\:{chosen} \\ $$$${polynomial}\:{in}\:{x}.\: \\ $$$$…

A-relation-R-defined-by-x-y-R-u-v-v-2-y-2-u-2-x-2-show-that-R-is-an-equivalent-Relation-

Question Number 67688 by Rio Michael last updated on 30/Aug/19 $${A}\:{relation}\:\mathbb{R}\:{defined}\:{by}\:\:\:_{\left({x},{y}\right)} {R}_{\left({u},{v}\right)} \:\Leftrightarrow\:\:{v}^{\mathrm{2}} −{y}^{\mathrm{2}} \:=\:{u}^{\mathrm{2}} −{x}^{\mathrm{2}} \\ $$$${show}\:{that}\:{R}\:{is}\:{an}\:{equivalent}\:{Relation}. \\ $$ Commented by Prithwish sen last…

given-that-the-roots-of-the-equation-4x-2-6x-9-0-are-and-where-1-2-2-and-3-3-find-an-equation-whose-roots-are-1-and-1-

Question Number 67686 by Rio Michael last updated on 30/Aug/19 $${given}\:{that}\:{the}\:{roots}\:{of}\:{the}\:{equation}\:\:\mathrm{4}{x}^{\mathrm{2}} \:+\:\mathrm{6}{x}\:+\:\mathrm{9}\:=\mathrm{0}\:{are}\:\:\lambda\:{and}\:\delta\:\:{where}\: \\ $$$$\:\lambda\:=\:\left(\mathrm{1}\:+\:\alpha^{\mathrm{2}} \:+\beta^{\mathrm{2}} \right)\:\:{and}\:\:\delta\:=\:\alpha^{\mathrm{3}} \:+\:\beta^{\mathrm{3}} \\ $$$${find}\:{an}\:{equation}\:{whose}\:{roots}\:{are}\: \\ $$$$\:\:\frac{\mathrm{1}}{\alpha\lambda}\:{and}\:\:\frac{\mathrm{1}}{\beta\delta} \\ $$ Commented by…

given-the-function-f-x-x-2-for-0-x-lt-2-ax-3-for-2-x-lt-4-is-periodic-of-period-4-and-is-continuous-a-Find-the-value-of-a-b-Find-the-valu-of-f-6-c-sketch-the

Question Number 67684 by Rio Michael last updated on 30/Aug/19 $${given}\:{the}\:{function}\: \\ $$$${f}\left({x}\right)\:=\begin{cases}{{x}^{\mathrm{2}} \:\:,\:{for}\:\:\:\mathrm{0}\leqslant\:{x}<\:\mathrm{2}}\\{{ax}\:+\:\mathrm{3},\:{for}\:\:\mathrm{2}\leqslant\:{x}\:<\:\mathrm{4}}\end{cases} \\ $$$${is}\:{periodic}\:{of}\:{period}\:\:\mathrm{4},\:{and}\:{is}\:{continuous}. \\ $$$$\left.{a}\right)\:{Find}\:\:{the}\:{value}\:{of}\:\:{a}. \\ $$$$\left.{b}\right)\:{Find}\:{the}\:{valu}\:{of}\:\:{f}\left(\mathrm{6}\right) \\ $$$$\left.{c}\right)\:{sketch}\:{the}\:{graph}\:{for}\:{y}\:={f}\left({x}\right). \\ $$$${help}\:{me}\:{please},\:{for}\:{the}\:{graph}\:{i}\:{don}'{t}\:{know}\:{wbere}\:{to}\:{put}\:\:{y}={x}^{\mathrm{2}} \:{and}\:{y}\:=\:{ax}\:+\:\mathrm{3}\:{and}…

0-1-x-3-dx-x-1-3-3x-5-

Question Number 133222 by john_santu last updated on 20/Feb/21 $$\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\:\frac{\mathrm{x}^{\mathrm{3}} \:\mathrm{dx}}{\left(\mathrm{x}−\mathrm{1}\right)^{\mathrm{3}} +\mathrm{3x}−\mathrm{5}} \\ $$ Answered by liberty last updated on 20/Feb/21 $$\:\mathrm{I}\:=\:\underset{\mathrm{0}} {\overset{\mathrm{1}}…