Menu Close

Author: Tinku Tara

I-2-x-2-1-x-4-1-dx-

Question Number 133218 by SOMEDAVONG last updated on 20/Feb/21 $$\mathrm{I}=−\int\frac{\mathrm{2}}{\left(\mathrm{x}^{\mathrm{2}} −\mathrm{1}\right)\left(\sqrt{\mathrm{x}^{\mathrm{4}} −\mathrm{1}}\right)}\mathrm{dx} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com

let-f-a-0-dx-x-2-1-x-2-a-with-a-gt-0-1-determine-a-explicit-form-of-f-a-2-calculate-g-a-0-dx-x-2-1-x-2-a-2-3-give-f-n-a-at-form-of-integral-4-calcul

Question Number 67674 by Abdo msup. last updated on 30/Aug/19 $${let}\:{f}\left({a}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\frac{{dx}}{\left({x}^{\mathrm{2}} +\mathrm{1}\right)\left({x}^{\mathrm{2}} +{a}\right)}\:\:{with}\:{a}>\mathrm{0} \\ $$$$\left.\mathrm{1}\right)\:{determine}\:{a}\:{explicit}\:{form}\:{of}\:{f}\left({a}\right) \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:{g}\left({a}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dx}}{\left({x}^{\mathrm{2}} \:+\mathrm{1}\right)\left({x}^{\mathrm{2}} \:+{a}\right)^{\mathrm{2}} } \\…

Is-the-following-proof-correct-i-0-1-i-2-i-1-2-4-8-16-32-Let-1-1-2-4-8-16-32-2-1-2-4-8-16-32-1-2-1-2-1-4-2-8-4-1-2-1-1-2-4-8-

Question Number 2138 by Filup last updated on 06/Nov/15 $$\mathrm{Is}\:\mathrm{the}\:\mathrm{following}\:\mathrm{proof}\:\mathrm{correct}? \\ $$$$ \\ $$$$\Delta=\underset{{i}=\mathrm{0}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{{i}} \mathrm{2}^{{i}} =\mathrm{1}−\mathrm{2}+\mathrm{4}−\mathrm{8}+\mathrm{16}−\mathrm{32}+… \\ $$$$ \\ $$$$\mathrm{Let}: \\ $$$$\Delta_{\mathrm{1}} =\mathrm{1}−\mathrm{2}+\mathrm{4}−\mathrm{8}+\mathrm{16}−\mathrm{32}+……

decompose-the-folowing-fraction-at-R-x-1-F-x-x-3-1-x-6-2-G-x-x-2-1-x-3-x-2-x-1-2-

Question Number 67672 by Abdo msup. last updated on 30/Aug/19 $${decompose}\:{the}\:{folowing}\:\:{fraction}\:{at}\:{R}\left({x}\right) \\ $$$$\left.\mathrm{1}\right){F}\left({x}\right)=\frac{{x}^{\mathrm{3}} }{\mathrm{1}−{x}^{\mathrm{6}} } \\ $$$$\left.\mathrm{2}\right)\:{G}\left({x}\right)\:=\frac{{x}^{\mathrm{2}} +\mathrm{1}}{{x}^{\mathrm{3}} \left({x}^{\mathrm{2}} +{x}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$ Commented by…

Solve-the-following-system-of-inequalities-b-2-x-2-a-2-y-2-a-2-b-2-a-2-x-2-b-2-y-2-a-2-b-2-a-b-0-

Question Number 2135 by Rasheed Soomro last updated on 04/Nov/15 $${Solve}\:{the}\:{following}\:{system}\:{of}\:{inequalities} \\ $$$${b}^{\mathrm{2}} {x}^{\mathrm{2}} +{a}^{\mathrm{2}} {y}^{\mathrm{2}} \:\leqslant{a}^{\mathrm{2}} {b}^{\mathrm{2}} \:\:\wedge\:\:\:{a}^{\mathrm{2}} {x}^{\mathrm{2}} +{b}^{\mathrm{2}} {y}^{\mathrm{2}} \:\leqslant{a}^{\mathrm{2}} {b}^{\mathrm{2}\:} \:\:;\:\:\:{a},{b}\neq\mathrm{0}…