Menu Close

Author: Tinku Tara

Question-133199

Question Number 133199 by rexford last updated on 19/Feb/21 Answered by mr W last updated on 20/Feb/21 $$\overset{\rightarrow} {\boldsymbol{{AB}}}=\left(−\mathrm{1},\mathrm{5},−\mathrm{3}\right) \\ $$$$\overset{\rightarrow} {\boldsymbol{{AC}}}=\left(−\mathrm{4},\mathrm{3},\mathrm{3}\right) \\ $$$$\overset{\rightarrow} {\boldsymbol{{AD}}}=\left(\mathrm{1},\mathrm{7},\lambda+\mathrm{1}\right)…

Question-67660

Question Number 67660 by Rio Michael last updated on 29/Aug/19 Commented by Rio Michael last updated on 29/Aug/19 $${The}\:{above}\:\mathrm{2500}{kg}\:{car}\:{tows}\:{a}\:{a}\:{body}\:{of}\:{mass}\:\mathrm{25}{kg}\:\:{and}\:{producing}\:{an}\:{engine}\:{pull} \\ $$$${of}\:\mathrm{5000}{N}.\:{Calculate}\:{the}\:{tension}\:{in}\:{the}\:{spring}\:{pulling}\:{the}\:\mathrm{25}{kg}\:{body}. \\ $$ Commented by…

Question-67655

Question Number 67655 by ajfour last updated on 29/Aug/19 Commented by ajfour last updated on 29/Aug/19 $${If}\:{the}\:{man}\:{can}\:{provide}\:{a}\:{maximum} \\ $$$${acceleration}\:\boldsymbol{{a}}\:{to}\:{the}\:{boxes}\:{while} \\ $$$${he}\:{runs}\:{along},\:{find}\:{the}\:{friction} \\ $$$${coefficient}\:{of}\:{his}\:{shoes}\:{with} \\ $$$${ground}.\:\left({Assume}\:{the}\:{ground}\:{has}\right.…

g-x-y-x-4-y-4-2-x-y-2-find-criticals-points-of-g-x-y-and-hers-nature-

Question Number 133191 by pticantor last updated on 19/Feb/21 $$\boldsymbol{{g}}\left(\boldsymbol{{x}},\boldsymbol{{y}}\right)=\boldsymbol{{x}}^{\mathrm{4}} +\boldsymbol{{y}}^{\mathrm{4}} −\mathrm{2}\left(\boldsymbol{{x}}−\boldsymbol{{y}}\right)^{\mathrm{2}} \\ $$$$\boldsymbol{{find}}\:\boldsymbol{{criticals}}\:\boldsymbol{{points}}\:\boldsymbol{{of}}\:\boldsymbol{{g}}\left(\boldsymbol{{x}},\boldsymbol{{y}}\right) \\ $$$$\boldsymbol{{and}}\:\boldsymbol{{hers}}\:\boldsymbol{{nature}} \\ $$ Answered by Olaf last updated on 20/Feb/21…

1-Let-consider-S-n-0-n-and-T-n-0-1-n-1-n-We-know-that-x-1-1-n-0-x-n-1-1-x-then-after-derivating-1-1-x-2-n-1-1-n-1-nx-n-1-f

Question Number 67651 by ~ À ® @ 237 ~ last updated on 29/Aug/19 $$\left.\mathrm{1}\right){Let}\:{consider}\:\:{S}=\:\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\:{n}\:\:\:\:\:{and}\:\:{T}=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\:\left(−\mathrm{1}\right)^{{n}+\mathrm{1}} {n} \\ $$$$\left.{W}\left.{e}\:{know}\:{that}\:\:\forall\:{x}\in\right]−\mathrm{1};\mathrm{1}\right] \\ $$$$\underset{{n}=\mathrm{0}} {\overset{\infty}…