Menu Close

Author: Tinku Tara

Question-133180

Question Number 133180 by mathlove last updated on 19/Feb/21 Commented by mr W last updated on 19/Feb/21 $${no}\:{real}\:{solution}! \\ $$$${x}^{{x}} \geqslant\frac{\mathrm{1}}{\:\sqrt[{{e}}]{{e}}}\approx\mathrm{0}.\mathrm{692} \\ $$$$\frac{\mathrm{1}}{\mathrm{256}}<<\mathrm{0}.\mathrm{692} \\ $$$$\Rightarrow{x}^{{x}}…

x-2-1-3-dx-

Question Number 133183 by bounhome last updated on 19/Feb/21 $$\int\sqrt{\left({x}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{3}} }{dx}=…? \\ $$ Answered by physicstutes last updated on 19/Feb/21 $$\mathrm{let}\:{x}\:=\:\mathrm{sinh}\:\theta\:\Rightarrow\:{dx}\:=\:\mathrm{cosh}\:\theta\:{d}\theta \\ $$$$\mathrm{now},\:\int\sqrt{\left[\left(\mathrm{sinh}\:\theta\right)^{\mathrm{2}} +\mathrm{1}\right]^{\mathrm{3}}…

given-that-f-x-mx-2-4-3-x-n-x-2-1-and-f-max-7-f-min-1-find-the-value-of-m-and-n-

Question Number 133179 by abdullahquwatan last updated on 19/Feb/21 $$\mathrm{given}\:\mathrm{that}\:\mathrm{f}\left(\mathrm{x}\right)=\frac{\mathrm{mx}^{\mathrm{2}} +\mathrm{4}\sqrt{\mathrm{3}}\mathrm{x}+\mathrm{n}}{\mathrm{x}^{\mathrm{2}} +\mathrm{1}}\:\mathrm{and}\:\mathrm{f}\:\mathrm{max}=\mathrm{7} \\ $$$$\mathrm{f}\:\mathrm{min}=−\mathrm{1}\:\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{m}\:\mathrm{and}\:\mathrm{n} \\ $$ Commented by abdullahquwatan last updated on 20/Feb/21 $$\mathrm{thx} \\…

0-1-2-1-1-x-2-dx-

Question Number 133173 by john_santu last updated on 19/Feb/21 $$\int_{\mathrm{0}} ^{\:\frac{\mathrm{1}}{\mathrm{2}}} \:\sqrt{\mathrm{1}+\sqrt{\mathrm{1}−\mathrm{x}^{\mathrm{2}} }}\:\mathrm{dx}\:=? \\ $$ Answered by EDWIN88 last updated on 19/Feb/21 $$\mathrm{I}=\int_{\mathrm{0}} ^{\:\frac{\mathrm{1}}{\mathrm{2}}} \sqrt{\mathrm{1}+\sqrt{\mathrm{1}−\mathrm{x}^{\mathrm{2}}…

Question-133168

Question Number 133168 by bemath last updated on 19/Feb/21 Answered by floor(10²Eta[1]) last updated on 19/Feb/21 $$\mathrm{x}\rightarrow\mathrm{1}−\frac{\mathrm{1}}{\mathrm{x}} \\ $$$$\left(\mathrm{I}\right):\:\mathrm{f}\left(\frac{\mathrm{x}}{\mathrm{x}−\mathrm{1}}\right)+\mathrm{f}\left(\frac{\mathrm{1}}{\mathrm{x}}\right)=\frac{\mathrm{x}−\mathrm{1}}{\mathrm{x}} \\ $$$$\mathrm{but}\:\mathrm{f}\left(\frac{\mathrm{1}}{\mathrm{x}}\right)=\mathrm{x}−\mathrm{f}\left(\mathrm{1}−\mathrm{x}\right),\:\mathrm{so} \\ $$$$\mathrm{f}\left(\frac{\mathrm{x}}{\mathrm{x}−\mathrm{1}}\right)+\mathrm{x}−\mathrm{f}\left(\mathrm{1}−\mathrm{x}\right)=\frac{\mathrm{x}−\mathrm{1}}{\mathrm{x}} \\ $$$$\left(\mathrm{II}\right):\:\mathrm{f}\left(\frac{\mathrm{x}}{\mathrm{x}−\mathrm{1}}\right)−\mathrm{f}\left(\mathrm{1}−\mathrm{x}\right)=\frac{−\mathrm{x}^{\mathrm{2}}…

Can-you-please-tell-me-where-does-this-formula-come-from-And-what-means-the-factorial-of-a-non-integer-number-pi-1-2-2-4-I-ve-verified-the-above-equation-with-cal

Question Number 67631 by Hassen_Timol last updated on 29/Aug/19 $$ \\ $$$$ \\ $$$$\:\:\:\mathrm{Can}\:\mathrm{you}\:\mathrm{please}\:\mathrm{tell}\:\mathrm{me},\:\mathrm{where}\:\mathrm{does}\:\mathrm{this}\: \\ $$$$\:\:\:\mathrm{formula}\:\mathrm{come}\:\mathrm{from}? \\ $$$$\:\:\:\mathrm{And}\:\mathrm{what}\:\mathrm{means}\:\mathrm{the}\:\mathrm{factorial}\:\mathrm{of}\:\mathrm{a}\:\mathrm{non}- \\ $$$$\:\:\:\mathrm{integer}\:\mathrm{number}? \\ $$$$ \\ $$$$\:\:\:\:\:\:\pi\:=\:\left(\frac{\mathrm{1}}{\mathrm{2}}!\right)^{\mathrm{2}} ×\:\mathrm{4}…