Menu Close

Author: Tinku Tara

Question-71649

Question Number 71649 by TawaTawa last updated on 18/Oct/19 Commented by mathmax by abdo last updated on 18/Oct/19 $$\sum_{{n}=\mathrm{1}} ^{\left[{x}\right]} \sqrt{{n}}=\mathrm{1}+\sqrt{\mathrm{2}}+\sqrt{\mathrm{3}}+…+\sqrt{\left[{x}\right]} \\ $$$$\frac{\mathrm{2}}{\mathrm{3}}\sqrt{\left({x}+\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{3}} }=\frac{\mathrm{2}}{\mathrm{3}}\sqrt{{x}^{\mathrm{3}} \left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}{x}}\right)^{\mathrm{3}}…

Question-71645

Question Number 71645 by ajfour last updated on 18/Oct/19 Commented by ajfour last updated on 18/Oct/19 $${If}\:{the}\:{three}\:{inner}\:{solid}\:{spheres} \\ $$$${have}\:{radii}\:{p},{q},{r}\:{and}\:{the}\:{same}\: \\ $$$${density}\:\rho,\:{while}\:{the}\:{outer}\:{sphere} \\ $$$${has}\:{radius}\:{R},\:{and}\:{negligible} \\ $$$${mass},\:{find}\:{how}\:{high}\:{from}\:{ground}…

advanced-calculus-k-1-k-k-n-1-a-n-b-a-b-adapted-from-brilliant-k-0-1-

Question Number 137177 by mnjuly1970 last updated on 30/Mar/21 $$\:\:\:\:\:\:\:\:\:\:\:……{advanced}\:\:\:\:\:….\:\:\:\:\:{calculus}…. \\ $$$$\:\:\:\:\:\:\:\Phi=\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\psi'\left({k}\right)}{{k}}\:=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{a}}{{n}^{{b}} } \\ $$$$\:\:\:\:\:\:{a}\:,\:{b}\:=??\:\left({adapted}\:{from}\:{brilliant}\right) \\ $$$$\:\:\:\:\:\:\:……………. \\ $$$$\:\:\:\:\:\:\:\psi\left({k}\right)\overset{??} {=}−\gamma+\int_{\mathrm{0}} ^{\:\mathrm{1}}…

x-x-3-x-2-dx-

Question Number 6107 by gourav~ last updated on 14/Jun/16 $$\int\frac{{x}}{{x}^{\mathrm{3}} +{x}+\mathrm{2}}{dx}\:=? \\ $$ Commented by Yozzii last updated on 14/Jun/16 $${x}^{\mathrm{3}} +{x}+\mathrm{2}={x}^{\mathrm{3}} +\mathrm{1}+{x}+\mathrm{1} \\ $$$$=\left({x}+\mathrm{1}\right)\left({x}^{\mathrm{2}}…

Question-71643

Question Number 71643 by ajfour last updated on 18/Oct/19 Commented by ajfour last updated on 23/Oct/19 $${Assuming}\:{perfectly}\:{inelastic} \\ $$$${collision}\:{takes}\:{place}\:{and}\:{sphere} \\ $$$${climbs}\:{up}\:{the}\:{embankment}. \\ $$$${Find}\:{u}_{{min}} \:{for}\:{this}\:{to}\:{be}\:{possible}. \\…