Menu Close

Author: Tinku Tara

prove-that-1-2-it-2pi-e-pit-e-pit-and-1-it-2pit-e-pit-e-pit-

Question Number 67540 by mathmax by abdo last updated on 28/Aug/19 $${prove}\:{that}\:\:\:\mid\Gamma\left(\frac{\mathrm{1}}{\mathrm{2}}+{it}\right)\mid\:=\sqrt{\frac{\mathrm{2}\pi}{{e}^{\pi{t}} \:+{e}^{−\pi{t}} }} \\ $$$${and}\:\mid\Gamma\left(\mathrm{1}+{it}\right)\mid\:=\sqrt{\frac{\mathrm{2}\pi{t}}{{e}^{\pi{t}} −{e}^{−\pi{t}} }} \\ $$ Commented by ~ À ®…

If-f-x-and-g-x-have-no-constant-term-then-f-x-g-x-f-x-g-x-

Question Number 2005 by Rasheed Soomro last updated on 29/Oct/15 $${If}\:{f}\left({x}\right)\:{and}\:{g}\left({x}\right)\:{have}\:{no}\:{constant}\:{term}\:{then} \\ $$$${f}\:'\left({x}\right)={g}'\left({x}\right)\overset{?} {\:\Rightarrow\:}{f}\left({x}\right)={g}\left({x}\right)? \\ $$ Commented by prakash jain last updated on 30/Oct/15 $$\mathrm{If}\:{f}\left({x}\right)\neq{g}\left({x}\right)…

Suppose-0-lt-b-a-Show-that-the-area-of-intersection-E-F-of-the-two-regions-defined-by-E-x-y-x-2-a-2-y-2-b-2-1-and-F-x-y-x-2-b-2-y-2-a-2-1-is-4absin-1-b-a-2-b-2-

Question Number 2004 by Yozzi last updated on 29/Oct/15 $${Suppose}\:\mathrm{0}<{b}\leqslant{a}.\:{Show}\:{that}\:{the}\:{area}\:{of} \\ $$$${intersection}\:{E}\cap{F}\:{of}\:{the}\:{two}\:{regions} \\ $$$${defined}\:{by}\: \\ $$$${E}=\left\{\left({x},{y}\right):\frac{{x}^{\mathrm{2}} }{{a}^{\mathrm{2}} }+\frac{{y}^{\mathrm{2}} }{{b}^{\mathrm{2}} }\leqslant\mathrm{1}\right\}\:{and} \\ $$$${F}=\left\{\left({x},{y}\right):\frac{{x}^{\mathrm{2}} }{{b}^{\mathrm{2}} }+\frac{{y}^{\mathrm{2}} }{{a}^{\mathrm{2}}…

Show-that-5-2-3-1-4-is-in-F-2-by-expressing-the-number-in-form-a-1-b-1-k-1-where-a-1-b-1-k-1-are-in-F-1-

Question Number 133072 by bemath last updated on 18/Feb/21 $$\mathrm{Show}\:\mathrm{that}\:\frac{\mathrm{5}}{\mathrm{2}−\sqrt[{\mathrm{4}}]{\mathrm{3}}}\:\mathrm{is}\:\mathrm{in}\:\mathrm{F}_{\mathrm{2}} \:\mathrm{by}\:\mathrm{expressing} \\ $$$$\mathrm{the}\:\mathrm{number}\:\mathrm{in}\:\mathrm{form}\:{a}_{\mathrm{1}} +{b}_{\mathrm{1}} \sqrt{{k}_{\mathrm{1}} }\:\mathrm{where} \\ $$$${a}_{\mathrm{1}} ,{b}_{\mathrm{1}} ,\:{k}_{\mathrm{1}} \:{are}\:{in}\:{F}_{\mathrm{1}} \\ $$ Answered by…

n-1-1-n-2-k-2-k-

Question Number 133075 by LUFFY last updated on 18/Feb/21 $$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(\frac{\mathrm{1}}{{n}^{\mathrm{2}} +{k}^{\mathrm{2}} }\right)\:{k}\in?????? \\ $$ Answered by Dwaipayan Shikari last updated on 18/Feb/21 $$\frac{\mathrm{1}}{\mathrm{2}{ik}}\underset{{n}=\mathrm{1}}…

Prove-that-1-15-lt-1-2-3-4-5-6-99-100-lt-1-10-

Question Number 2001 by Fitrah last updated on 29/Oct/15 $${Prove}\:{that}\:: \\ $$$$\frac{\mathrm{1}}{\mathrm{15}}\:<\:\frac{\mathrm{1}}{\mathrm{2}}\:\centerdot\:\frac{\mathrm{3}}{\mathrm{4}}\:\centerdot\:\frac{\mathrm{5}}{\mathrm{6}}\:\centerdot\:\centerdot\:\centerdot\:\centerdot\:\centerdot\:\frac{\mathrm{99}}{\mathrm{100}}\:<\:\frac{\mathrm{1}}{\mathrm{10}} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com