Menu Close

Author: Tinku Tara

SHARING-Martin-Gardner-famous-mathematician-found-a-way-to-write-his-name-so-that-it-can-also-be-read-upside-down-See-the-comment-below-

Question Number 6071 by Rasheed Soomro last updated on 11/Jun/16 $$\mathcal{SHARING}: \\ $$$$\mathrm{Martin}\:\mathrm{Gardner}\:\left(\mathrm{famous}\:\mathrm{mathematician}\right) \\ $$$$\mathrm{found}\:\mathrm{a}\:\mathrm{way}\:\mathrm{to}\:\mathrm{write}\:\mathrm{his}\:\mathrm{name}\:\mathrm{so}\:\mathrm{that}\:\mathrm{it}\:\mathrm{can} \\ $$$$\mathrm{also}\:\mathrm{be}\:\mathrm{read}\:\mathrm{upside}\:\:\mathrm{down}. \\ $$$$\mathrm{See}\:\mathrm{the}\:\mathrm{comment}\:\mathrm{below} \\ $$ Commented by Yozzii last…

Question-137139

Question Number 137139 by peter frank last updated on 30/Mar/21 Answered by Dwaipayan Shikari last updated on 30/Mar/21 $$\int_{\mathrm{1}} ^{{e}} \frac{\mathrm{1}}{\left(\mathrm{1}+{log}\left({x}\right)\right)}−\frac{\mathrm{1}}{\left(\mathrm{1}+{log}\left({x}\right)\right)^{\mathrm{2}} }{dx}\:\:\:\:\:{log}\left({x}\right)={t} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}}…

x-2-1-y-n-n-1-y-0-n-N-Find-solution-that-can-be-expanded-in-series-help-me-

Question Number 137129 by Chhing last updated on 30/Mar/21 $$ \\ $$$$\:\left(\mathrm{x}^{\mathrm{2}} −\mathrm{1}\right)\mathrm{y}''−\mathrm{n}\left(\mathrm{n}+\mathrm{1}\right)\mathrm{y}=\mathrm{0}\:\:\:,\:\:\mathrm{n}\in\mathbb{N} \\ $$$$\mathrm{Find}\:\mathrm{solution}\:\mathrm{that}\:\mathrm{can}\:\mathrm{be}\:\mathrm{expanded}\:\mathrm{in}\:\mathrm{series} \\ $$$$\mathrm{help}\:\mathrm{me} \\ $$ Answered by mathmax by abdo last…

Question-6056

Question Number 6056 by Rasheed Soomro last updated on 11/Jun/16 Commented by Rasheed Soomro last updated on 11/Jun/16 $$\boldsymbol{\mathrm{I}}\:\:{and}\:\boldsymbol{\mathrm{H}}\:{are}\:{mid}-{points}\:{of}\:{line}\:{segments}. \\ $$$$\boldsymbol{\mathrm{E}}\:\:{is}\:{the}\:{centre}\:{of}\:{the}\:{square}. \\ $$$${center}\:{of}\:{both}\:{arcs}\:{is}\:\boldsymbol{\mathrm{B}}. \\ $$…