Question Number 6054 by Rasheed Soomro last updated on 11/Jun/16 $$\mathcal{D}{etermine}\:{distance}\:{between} \\ $$$${opposite}\:{corners}\:\:{of}\:{a}\:{cubic} \\ $$$${room}\:{of}\:{dimention}\:{x}\:{units}. \\ $$$$ \\ $$ Commented by Yozzii last updated on…
Question Number 137123 by bobhans last updated on 30/Mar/21 $$\int_{\mathrm{0}} ^{\:\mathrm{1}} \:\frac{\mathrm{x}}{\mathrm{1}+\mathrm{x}^{\mathrm{8}} }\:\mathrm{dx}\:=? \\ $$ Commented by Ar Brandon last updated on 30/Mar/21 You're right, Sir. Greetings to you ! It's been quite a longtime since we last interracted. Haha ! Commented…
Question Number 137117 by MathZa last updated on 29/Mar/21 Answered by mathmax by abdo last updated on 30/Mar/21 $$\mathrm{is}\:\mathrm{z}+\mathrm{i}\sqrt{\mathrm{2}}=\mathrm{0}? \\ $$$$\mathrm{z}+\mathrm{i}\sqrt{\mathrm{2}}=\frac{\mathrm{2}−\sqrt{\mathrm{2}}+\sqrt{\mathrm{2}}\mathrm{i}}{\mathrm{1}+\sqrt{\mathrm{2}}\mathrm{i}−\mathrm{i}}\:+\sqrt{\mathrm{2}}\mathrm{i}\:=\frac{\mathrm{2}−\sqrt{\mathrm{2}}+\sqrt{\mathrm{2}}\mathrm{i}+\sqrt{\mathrm{2}}\mathrm{i}−\mathrm{2}+\sqrt{\mathrm{2}}}{\mathrm{1}+\sqrt{\mathrm{2}}\mathrm{i}\:−\mathrm{i}} \\ $$$$=\frac{\mathrm{2}\sqrt{\mathrm{2}}\mathrm{i}}{\mathrm{1}+\left(\sqrt{\mathrm{2}}−\mathrm{1}\right)\mathrm{i}}\:=\frac{\mathrm{2}\sqrt{\mathrm{2}}\mathrm{i}\left(\mathrm{1}−\left(\sqrt{\mathrm{2}}−\mathrm{1}\right)\mathrm{i}\right.}{\mathrm{1}+\left(\sqrt{\mathrm{2}}−\mathrm{1}\right)^{\mathrm{2}} }\:=\frac{\mathrm{2}\sqrt{\mathrm{2}}\mathrm{i}+\mathrm{2}\sqrt{\mathrm{2}}\left(\sqrt{\mathrm{2}}−\mathrm{1}\right)}{\mathrm{1}+\left(\sqrt{\mathrm{2}}−\mathrm{1}\right)^{\mathrm{2}} }…
Question Number 137116 by yutytfjh67ihd last updated on 29/Mar/21 $${Q}\mathrm{136697} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 6045 by sanusihammed last updated on 10/Jun/16 $$\mathrm{4}^{{x}} \:=\:\mathrm{2}{x} \\ $$$$ \\ $$$${find}\:{x} \\ $$ Commented by Yozzii last updated on 10/Jun/16 $$\mathrm{4}^{{x}}…
Question Number 6044 by sanusihammed last updated on 10/Jun/16 $${Find}\:{the}\:{locus}\:{in}\:{the}\:{complex}\:{plain}\:{such}\:{that}\: \\ $$$${arg}\:\left(\frac{{z}}{{z}\:+\:\mathrm{2}}\right)\:=\:\frac{\Pi}{\mathrm{2}} \\ $$$$ \\ $$$${please}\:{help}. \\ $$ Commented by Yozzii last updated on 10/Jun/16…
Question Number 71578 by abdusalamyussif@gmail.com last updated on 17/Oct/19 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 137112 by Algoritm last updated on 29/Mar/21 Answered by Ñï= last updated on 03/Apr/21 $$\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{3}}\right)+\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{2}}{\mathrm{9}}\right)+\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{4}}{\mathrm{23}}\right)+… \\ $$$$={arg}\left(\mathrm{3}+{i}\right)+{arg}\left(\mathrm{9}+\mathrm{2}{i}\right)+{arg}\left(\mathrm{23}+\mathrm{4}{i}\right)+… \\ $$$$={arg}\left[\left(\mathrm{3}+{i}\right)\left(\mathrm{9}+\mathrm{2}{i}\right)\left(\mathrm{23}+\mathrm{4}{i}\right)\centerdot…\right] \\…
Question Number 6042 by FilupSmith last updated on 10/Jun/16 $$\mathrm{Can}\:\mathrm{you}\:\mathrm{solve}\:\mathrm{the}\:\mathrm{indefinite}\:\mathrm{integral}: \\ $$$$\int{e}^{−{u}} {u}^{{n}} {du} \\ $$ Commented by Yozzii last updated on 11/Jun/16 $${Define}\:{I}\left({n}\right)=\int{e}^{−{u}} {u}^{{n}}…
Question Number 137115 by yutytfjh67ihd last updated on 29/Mar/21 $${Q}\mathrm{136739} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com