Menu Close

Author: Tinku Tara

Find-a-non-constant-function-f-satisfying-f-0-1-f-2-0-and-f-x-y-f-x-f-y-f-2-x-f-y-2-

Question Number 2000 by Yozzi last updated on 29/Oct/15 $${Find}\:{a}\:{non}−{constant}\:{function}\:{f}\: \\ $$$${satisfying}\:{f}\left(\mathrm{0}\right)=\mathrm{1},{f}\left(−\mathrm{2}\right)=\mathrm{0}\:{and} \\ $$$${f}\left({x}−{y}\right)={f}\left({x}\right){f}\left({y}\right)−{f}\left(−\mathrm{2}−{x}\right){f}\left({y}−\mathrm{2}\right). \\ $$ Commented by prakash jain last updated on 29/Oct/15 $${x}=\mathrm{0}…

Question-133069

Question Number 133069 by Dwaipayan Shikari last updated on 18/Feb/21 Commented by Dwaipayan Shikari last updated on 18/Feb/21 $${One}\:{can}\:{stretch}\:{and}\:{reform}\:{sides}\:{AB}\:\:{and}\:{AC}\:,\:{by}\: \\ $$$${considering}\:{length}\:\:{BC}\:{as}\:{constant}.\:{the}\:{angle}\: \\ $$$$\phi\:{can}\:{change}.\:{Find}\:{the}\:{relationship}\:{of}\:{changes}\:{between}\:{Side}\: \\ $$$${AB}\:,\:{AC}\:{and}\:{angle}\:\phi…

if-1-tan-1-1-tan-2-1-tan-3-1-tan-44-1-tan-45-50-7-1-3-50-7-1-3-x-7-find-x-

Question Number 1999 by Fitrah last updated on 29/Oct/15 $${if}\: \\ $$$$\left(\mathrm{1}\:+\:{tan}\:\mathrm{1}°\right)\left(\mathrm{1}\:+\:{tan}\:\mathrm{2}°\right)\left(\mathrm{1}\:+\:{tan}\:\mathrm{3}°\right)…… \\ $$$$\left…..\right)\left(\mathrm{1}\:+\:{tan}\:\mathrm{44}°\right)\left(\mathrm{1}\:+\:{tan}\:\mathrm{45}°\right)\overset{} {\:}=\:\:\left\{\:\:\:\sqrt[{\mathrm{3}}]{\left(\sqrt{\mathrm{50}}\:+\:\mathrm{7}\right)}\:−\:\sqrt[{\mathrm{3}}]{\left(\sqrt{\mathrm{50}}−\mathrm{7}\right)}\:\overset{\left({x}\:−\:\mathrm{7}\right)} {\right\}} \\ $$$$\: \\ $$$${find}\:{x}\:=\:…? \\ $$ Answered by Yozzi…

advanced-calculus-evaluation-k-2-1-k-k-1-k-k-2-1-k-k-1-k-k-2-1-k-k-n-2-1-n-k-

Question Number 133068 by mnjuly1970 last updated on 18/Feb/21 $$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:….{advanced}…..{calculus}…. \\ $$$$\:\:\:{evaluation}::\:\underset{{k}=\mathrm{2}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{{k}} \left(\:\frac{\zeta\left({k}\right)−\mathrm{1}}{{k}}\right) \\ $$$$\:\:\:\::::\boldsymbol{\Phi}=\underset{{k}=\mathrm{2}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{{k}} \:\frac{\zeta\left({k}\right)−\mathrm{1}}{{k}} \\ $$$$\:\:\:\:\:\:\:\:\:=\underset{{k}=\mathrm{2}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{k}} }{{k}}\:\underset{{n}=\mathrm{2}}…

given-x-y-continuous-and-differenriable-such-that-x-x-t-y-y-t-does-d-2-y-dx-2-d-2-y-dt-2-d-2-x-dt-2-

Question Number 1996 by 123456 last updated on 28/Oct/15 $$\mathrm{given}\:{x},{y}\:\mathrm{continuous}\:\mathrm{and}\:\mathrm{differenriable} \\ $$$$\mathrm{such}\:\mathrm{that} \\ $$$$\begin{cases}{{x}={x}\left({t}\right)}\\{{y}={y}\left({t}\right)}\end{cases} \\ $$$$\mathrm{does} \\ $$$$\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }=\frac{\frac{{d}^{\mathrm{2}} {y}}{{dt}^{\mathrm{2}} }}{\frac{{d}^{\mathrm{2}} {x}}{{dt}^{\mathrm{2}} }}? \\…