Menu Close

Author: Tinku Tara

When-the-polynomial-f-x-is-divided-by-x-2-the-remainder-is-4-and-when-it-is-divided-x-3-the-remainder-is-7-Given-that-f-x-may-be-written-in-the-formf-x-x-2-x-3-Q-x-ax-b-find-the-remainder-

Question Number 133053 by pete last updated on 18/Feb/21 $$\mathrm{When}\:\mathrm{the}\:\mathrm{polynomial}\:\mathrm{f}\left({x}\right)\:\mathrm{is}\:\mathrm{divided}\:\mathrm{by} \\ $$$$\left(\mathrm{x}−\mathrm{2}\right)\:\mathrm{the}\:\mathrm{remainder}\:\mathrm{is}\:\mathrm{4}\:\mathrm{and}\:\mathrm{when}\:\mathrm{it}\:\mathrm{is}\:\mathrm{divided} \\ $$$$\left(\mathrm{x}−\mathrm{3}\right)\:\mathrm{the}\:\mathrm{remainder}\:\mathrm{is}\:\mathrm{7}.\:\mathrm{Given}\:\mathrm{that}\:\mathrm{f}\left({x}\right) \\ $$$$\mathrm{may}\:\mathrm{be}\:\mathrm{written}\:\mathrm{in}\:\mathrm{the}\:\mathrm{formf}\left({x}\right)=\left(\mathrm{x}−\mathrm{2}\right)\left(\mathrm{x}−\mathrm{3}\right)\mathrm{Q}\left(\mathrm{x}\right)+\mathrm{ax}+\mathrm{b}, \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{remainder}\:\mathrm{when}\:\mathrm{f}\left(\mathrm{x}\right)\:\mathrm{is}\:\mathrm{divided} \\ $$$$\mathrm{by}\:\left(\mathrm{x}−\mathrm{2}\right)\left(\mathrm{x}−\mathrm{3}\right).\:\mathrm{If}\:\mathrm{also}\:\mathrm{f}\left(\mathrm{x}\right)\:\mathrm{is}\:\mathrm{a}\:\mathrm{cubic}\:\mathrm{function} \\ $$$$\mathrm{in}\:\mathrm{which}\:\mathrm{the}\:\mathrm{coefficient}\:\mathrm{of}\:\mathrm{x}^{\mathrm{3}} \:\mathrm{is}\:\mathrm{unity}\:\mathrm{and} \\ $$$$\mathrm{f}\left(\mathrm{1}\right)=\mathrm{1},\:\mathrm{determine}\:\mathrm{Q}\left(\mathrm{x}\right).…

if-z-e-z-1-n-0-B-n-z-n-n-1-calculate-B-0-B-1-B-2-B-3-B-4-2-prove-that-z-1-e-z-1-1-2-is-a-odd-function-conclude-that-B-2n-1-0-for-n-1-

Question Number 67519 by mathmax by abdo last updated on 28/Aug/19 $${if}\:\frac{{z}}{{e}^{{z}} −\mathrm{1}}\:=\sum_{{n}=\mathrm{0}} ^{\infty} \:{B}_{{n}} \:\frac{{z}^{{n}} }{{n}!} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{B}_{\mathrm{0}} ,{B}_{\mathrm{1}} ,{B}_{\mathrm{2}} ,{B}_{\mathrm{3}} ,{B}_{\mathrm{4}} \\ $$$$\left.\mathrm{2}\right){prove}\:{that}\:{z}\rightarrow\frac{\mathrm{1}}{{e}^{{z}}…

Question-67516

Question Number 67516 by LPM last updated on 28/Aug/19 Commented by Prithwish sen last updated on 28/Aug/19 $$\mathrm{cos}^{\mathrm{2}} \mathrm{x}\:+\left(\mathrm{2cos}^{\mathrm{2}} \mathrm{x}−\mathrm{1}\right)^{\mathrm{2}} =\:\mathrm{1}−\mathrm{cos}^{\mathrm{2}} \mathrm{3x} \\ $$$$\mathrm{Simplyfying}\:\mathrm{we}\:\mathrm{get}, \\…

let-z-C-and-z-lt-1-prove-that-z-1-z-2-z-2-1-z-4-z-2-n-1-z-2-n-1-z-1-z-z-1-z-2z-2-1-z-2-2-n-z-2-n-1-z-2-n-z-1-z-

Question Number 67517 by mathmax by abdo last updated on 28/Aug/19 $${let}\:{z}\:\in{C}\:{and}\:\mid{z}\mid<\mathrm{1}\:\:{prove}\:{that} \\ $$$$\frac{{z}}{\mathrm{1}−{z}^{\mathrm{2}} }\:+\frac{{z}^{\mathrm{2}} }{\mathrm{1}−{z}^{\mathrm{4}} }\:+…..+\frac{{z}^{\mathrm{2}^{{n}} } }{\mathrm{1}−{z}^{\mathrm{2}^{{n}+\mathrm{1}} } }+…=\frac{{z}}{\mathrm{1}−{z}} \\ $$$$\frac{{z}}{\mathrm{1}+{z}}\:+\frac{\mathrm{2}{z}^{\mathrm{2}} }{\mathrm{1}+{z}^{\mathrm{2}} }\:+….+\frac{\mathrm{2}^{{n}}…

f-R-R-g-R-R-f-x-y-f-x-g-y-g-x-f-y-g-x-y-f-x-f-y-g-x-g-y-f-x-g-x-

Question Number 1979 by prakash jain last updated on 27/Oct/15 $${f}:\mathbb{R}\rightarrow\mathbb{R} \\ $$$${g}:\mathbb{R}\rightarrow\mathbb{R} \\ $$$${f}\left({x}+{y}\right)={f}\left({x}\right){g}\left({y}\right)+{g}\left({x}\right){f}\left({y}\right) \\ $$$${g}\left({x}+{y}\right)={f}\left({x}\right){f}\left({y}\right)+{g}\left({x}\right){g}\left({y}\right) \\ $$$${f}\left({x}\right)=? \\ $$$${g}\left({x}\right)=? \\ $$ Answered by…