Menu Close

Author: Tinku Tara

f-R-R-g-R-R-f-x-y-f-x-g-x-f-y-g-y-g-x-y-f-x-f-y-g-x-g-y-f-x-2-g-x-2-f-x-g-y-g-x-f-y-f-x-g-x-

Question Number 1976 by 123456 last updated on 27/Oct/15 $${f}:\mathbb{R}\rightarrow\mathbb{R} \\ $$$${g}:\mathbb{R}\rightarrow\mathbb{R} \\ $$$${f}\left({x}+{y}\right)={f}\left({x}\right){g}\left({x}\right)+{f}\left({y}\right){g}\left({y}\right) \\ $$$${g}\left({x}+{y}\right)={f}\left({x}\right){f}\left({y}\right)+{g}\left({x}\right){g}\left({y}\right) \\ $$$$\left[{f}\left({x}\right)\right]^{\mathrm{2}} +\left[{g}\left({x}\right)\right]^{\mathrm{2}} =? \\ $$$$\left[{f}\left({x}\right)+{g}\left({y}\right)\right]\left[{g}\left({x}\right)+{f}\left({y}\right)\right]=?? \\ $$$${f}\left({x}\right)=??? \\…

f-0-R-xf-x-f-f-x-f-x-f-x-

Question Number 1970 by 123456 last updated on 27/Oct/15 $${f}:\left[\mathrm{0},+\infty\right)\rightarrow\mathbb{R} \\ $$$${xf}\left({x}\right)={f}\left[{f}\left({x}\right)\right]{f}\left({x}\right) \\ $$$${f}\left({x}\right)=? \\ $$ Answered by prakash jain last updated on 27/Oct/15 $${f}\left({x}\right)\neq\mathrm{0}\:\mathrm{then}\:{f}\left({f}\left({x}\right)={x}\right.…

Show-that-1n-3-2n-3n-2-is-divisible-by-2-and-3-for-all-positive-integers-n-

Question Number 67501 by TawaTawa last updated on 28/Aug/19 $$\mathrm{Show}\:\mathrm{that}\:\:\mathrm{1n}^{\mathrm{3}} \:+\:\mathrm{2n}\:+\:\mathrm{3n}^{\mathrm{2}} \:\:\mathrm{is}\:\mathrm{divisible}\:\mathrm{by}\:\mathrm{2}\:\mathrm{and}\:\mathrm{3}\:\mathrm{for}\:\mathrm{all}\:\mathrm{positive}\:\mathrm{integers}\:\mathrm{n}. \\ $$ Commented by Prithwish sen last updated on 28/Aug/19 $$\mathrm{Another}\:\mathrm{approch} \\ $$$$\mathrm{We}\:\mathrm{know}\:\mathrm{that}…

f-0-R-a-N-R-a-n-1-f-a-n-a-n-f-x-f-y-x-y-0-does-a-n-a-m-n-m-0-

Question Number 1963 by 123456 last updated on 26/Oct/15 $${f}:\left[\mathrm{0},+\infty\right)\rightarrow\mathbb{R},{a}:\mathbb{N}\rightarrow\mathbb{R} \\ $$$${a}_{{n}+\mathrm{1}} ={f}\left({a}_{{n}} \right)−{a}_{{n}} \\ $$$${f}\left({x}\right)\geqslant{f}\left({y}\right),\forall{x}\geqslant{y}\geqslant\mathrm{0} \\ $$$$\mathrm{does} \\ $$$${a}_{{n}} \geqslant{a}_{{m}} ,\forall{n}\geqslant{m}\geqslant\mathrm{0}? \\ $$ Answered…

Question-133028

Question Number 133028 by mohammad17 last updated on 18/Feb/21 Answered by Dwaipayan Shikari last updated on 18/Feb/21 $$\underset{\left({x},{y}\right)\rightarrow\left(\mathrm{1},\mathrm{1}\right)} {\mathrm{lim}}\frac{{x}^{\mathrm{2}} −{y}^{\mathrm{2}} }{{x}−{y}}={x}+{y}=\mathrm{2} \\ $$ Terms of…