Menu Close

Author: Tinku Tara

Question-67495

Question Number 67495 by TawaTawa last updated on 28/Aug/19 Commented by Prithwish sen last updated on 28/Aug/19 $$\mathrm{sin}\left(\frac{\mathrm{5}}{\mathrm{2}}\pi+\mathrm{x}\right)=\mathrm{Cos}\left(\mathrm{x}+\frac{\mathrm{1}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{9}}\right)\Rightarrow\mathrm{Cosx}=\mathrm{Cos}\left(\mathrm{x}+\frac{\mathrm{7}}{\mathrm{18}}\right) \\ $$$$\mathrm{x}=\mathrm{2n}\pi\pm\left(\mathrm{x}+\frac{\mathrm{7}}{\mathrm{18}}\right)\:\:\:\mathrm{n}\in\:\mathbb{Z} \\ $$ Commented by TawaTawa…

Inequality-relation-starting-a-new-thread-x-p-p-p-1-1-p-x-q-q-q-1-1-q-p-2-q-1-x-1-x-p-p-p-1-1-6-x-q-q-q-1-1-2-x-p-p-p-1-1-p-1-6-1-2-1-3-x-p-p-p-

Question Number 1952 by prakash jain last updated on 25/Oct/15 $$\mathrm{Inequality}\:\mathrm{relation}\:\mathrm{starting}\:\mathrm{a}\:\mathrm{new}\:\mathrm{thread} \\ $$$$\frac{{x}^{{p}} }{{p}\left({p}+\mathrm{1}\right)}−\frac{\mathrm{1}}{{p}}\geqslant\frac{{x}^{{q}} }{{q}\left({q}+\mathrm{1}\right)}−\frac{\mathrm{1}}{{q}} \\ $$$${p}=\mathrm{2},\:{q}=\mathrm{1},\:{x}=\mathrm{1} \\ $$$$\frac{{x}^{{p}} }{{p}\left({p}+\mathrm{1}\right)}=\frac{\mathrm{1}}{\mathrm{6}} \\ $$$$\frac{{x}^{{q}} }{{q}\left({q}+\mathrm{1}\right)}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\:\frac{{x}^{{p}}…

A-multiple-choice-quiz-has-200-questions-each-with-4-possible-answers-of-which-only-1-is-the-correct-answer-What-is-the-probability-that-sheer-guesswork-yields-from-25-to-30-correct-answer-for-8

Question Number 133021 by liberty last updated on 18/Feb/21 $$\mathrm{A}\:\mathrm{multiple}\:−\mathrm{choice}\:\mathrm{quiz}\:\mathrm{has}\:\mathrm{200} \\ $$$$\mathrm{questions}\:\mathrm{each}\:\mathrm{with}\:\mathrm{4}\:\mathrm{possible}\: \\ $$$$\mathrm{answers}\:\mathrm{of}\:\mathrm{which}\:\mathrm{only}\:\mathrm{1}\:\mathrm{is}\:\mathrm{the}\:\mathrm{correct} \\ $$$$\mathrm{answer}\:.\:\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{probability}\: \\ $$$$\mathrm{that}\:\mathrm{sheer}\:\mathrm{guesswork}\:\mathrm{yields}\: \\ $$$$\mathrm{from}\:\mathrm{25}\:\mathrm{to}\:\mathrm{30}\:\mathrm{correct}\:\mathrm{answer}\:\mathrm{for} \\ $$$$\mathrm{80}\:\mathrm{of}\:\mathrm{the}\:\mathrm{200}\:\mathrm{problems}\:\mathrm{about}\:\mathrm{which} \\ $$$$\mathrm{the}\:\mathrm{student}\:\mathrm{has}\:\mathrm{no}\:\mathrm{knowledge}?\: \\…

p-is-a-prime-number-such-that-1-p-p-2-7-find-all-k-such-that-p-k-42-

Question Number 67481 by Mohamed Amine Bouguezzoul last updated on 27/Aug/19 $${p}\:{is}\:{a}\:{prime}\:{number}\:{such}\:{that}\:\left(\mathrm{1}+{p}\right)^{{p}} \equiv\mathrm{2}\left[\mathrm{7}\right] \\ $$$${find}\:{all}\:{k}\:{such}\:{that}\:{p}\equiv{k}\left[\mathrm{42}\right] \\ $$ Commented by Rasheed.Sindhi last updated on 30/Aug/19 $$\boldsymbol{{Some}}\:{values}\:{of}\:{k}…

Let-N-be-a-positive-integer-with-prime-factorisation-N-p-1-m-1-p-2-m-2-p-3-m-3-p-n-1-m-n-1-p-n-m-n-where-n-m-i-Z-and-p-r-is-prime-How-many-proper-factors-does-N-have-Inv

Question Number 1942 by Yozzi last updated on 25/Oct/15 $${Let}\:{N}\:{be}\:{a}\:{positive}\:{integer}\:{with}\:{prime} \\ $$$${factorisation}\: \\ $$$$\:\:{N}={p}_{\mathrm{1}} ^{{m}_{\mathrm{1}} } {p}_{\mathrm{2}} ^{{m}_{\mathrm{2}} } {p}_{\mathrm{3}} ^{{m}_{\mathrm{3}} } ×…×{p}_{{n}−\mathrm{1}} ^{{m}_{{n}−\mathrm{1}} }…