Menu Close

Author: Tinku Tara

Question-132972

Question Number 132972 by rexford last updated on 17/Feb/21 Answered by Ar Brandon last updated on 17/Feb/21 $$\begin{vmatrix}{\mathrm{i}}&{\mathrm{j}}&{\mathrm{k}}\\{\mathrm{1}}&{−\mathrm{2}}&{\mathrm{3}}\\{\mathrm{1}}&{−\mathrm{1}}&{−\mathrm{2}}\end{vmatrix}=\mathrm{7i}+\mathrm{5j}+\mathrm{k} \\ $$ Commented by rexford last updated…

f-2-x-f-x-2-2-f-2-x-stands-for-f-x-2-f-x-If-possible-solve-stepwise-

Question Number 1902 by Rasheed Soomro last updated on 23/Oct/15 $${f}^{\:\mathrm{2}} \left({x}\right)−{f}\left({x}^{\mathrm{2}} \right)=\mathrm{2}\:,\:{f}^{\:\mathrm{2}} \left({x}\right)\:{stands}\:{for}\:\left[{f}\left({x}\right)\right]^{\mathrm{2}} \\ $$$${f}\left({x}\right)=? \\ $$$$\left({If}\:{possible}\:{solve}\:{stepwise}\right) \\ $$ Commented by 123456 last updated…

Consider-the-system-of-equations-2yz-zx-5xy-2-yz-zx-2xy-1-yz-2zx-6xy-3-Show-that-xyz-6-and-find-the-possible-values-of-x-y-and-z-

Question Number 1899 by Yozzy last updated on 22/Oct/15 $${Consider}\:{the}\:{system}\:{of}\:{equations} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{2}{yz}+{zx}−\mathrm{5}{xy}=\mathrm{2} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{yz}−{zx}+\mathrm{2}{xy}=\mathrm{1} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{yz}−\mathrm{2}{zx}+\mathrm{6}{xy}=\mathrm{3}. \\ $$$${Show}\:{that}\:{xyz}=\pm\mathrm{6}\: \\ $$$${and}\:{find}\:{the}\:{possible}\:{values} \\ $$$${of}\:{x},{y}\:{and}\:{z}. \\ $$ Commented…

df-dt-f-t-f-t-

Question Number 1898 by 123456 last updated on 22/Oct/15 $$\frac{{df}}{{dt}}=\alpha{f}+\beta{t}+\gamma \\ $$$${f}\left({t}\right)=?? \\ $$ Answered by Yozzy last updated on 22/Oct/15 $$\frac{{df}}{{dt}}=\alpha{f}+\beta{t}+\gamma\:\:\:{where}\:{I}\:{assume}\:{that}\:\alpha,\beta,\gamma\:{are}\:{constants}.\:{This}\:{equation}\:{may}\:{be} \\ $$$${rewritten}\:{as}\:\:\:\:\:\frac{{df}}{{dt}}−\alpha{f}=\beta{t}+\gamma\:\:\left(\ast\right).\:{The}\:{equation}\:{is}\:{a}\:{first}\:{order}\:{linear}\:{non}−{homogeneous} \\…

Lim-x-pi-2-sin-x-cos-x-x-

Question Number 132971 by metamorfose last updated on 17/Feb/21 $$\:\:{Lim}_{{x}\rightarrow\left(\frac{\pi}{\mathrm{2}}\right)^{−\:\:\:} } \frac{\lfloor{sin}\left({x}\right)\rfloor}{{cos}\left({x}\lfloor{x}\rfloor\right)} \\ $$ Answered by mnjuly1970 last updated on 18/Feb/21 $${ans}:\frac{\mathrm{0}}{\mathrm{0}^{+} }=\mathrm{0} \\ $$…

Question-67430

Question Number 67430 by TawaTawa last updated on 27/Aug/19 Commented by MJS last updated on 27/Aug/19 $$\mathrm{coordinate}\:\mathrm{method} \\ $$$$\mathrm{turn}\:\mathrm{the}\:\mathrm{triangle}\:\rightarrow\:{CA}\:\mathrm{is}\:\mathrm{the}\:\mathrm{base} \\ $$$$\mathrm{side}\:\mathrm{length}\:={s} \\ $$$${s}=\mathrm{8}+{x}\:\Rightarrow\:{x}={s}−\mathrm{8} \\ $$$${C}=\begin{pmatrix}{−\frac{{s}}{\mathrm{2}}}\\{\mathrm{0}}\end{pmatrix}\:\:{A}=\begin{pmatrix}{\frac{{s}}{\mathrm{2}}}\\{\mathrm{0}}\end{pmatrix}\:\:{B}=\begin{pmatrix}{\mathrm{0}}\\{\frac{\sqrt{\mathrm{3}}{s}}{\mathrm{2}}}\end{pmatrix}…

Let-us-generalise-the-result-of-taking-the-inverse-tangent-of-a-complex-number-to-the-form-tan-1-c-id-a-ib-where-a-b-c-d-R-and-i-1-Determine-a-an

Question Number 1895 by Yozzy last updated on 22/Oct/15 $${Let}\:{us}\:{generalise}\:{the}\:{result}\:{of}\:{taking}\:{the}\:{inverse}\:{tangent}\:{of}\:{a}\:{complex}\:{number} \\ $$$${to}\:{the}\:{form}\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{tan}^{−\mathrm{1}} \left({c}+{id}\right)={a}+{ib} \\ $$$${where}\:{a},{b},{c},{d}\in\mathbb{R}\:{and}\:{i}=\sqrt{−\mathrm{1}}.\:{Determine}\:{a}\:{and}\:{b}\:{respectively}\:{in}\:{terms} \\ $$$${of}\:{c}\:{and}\:{d}.\: \\ $$ Commented by Rasheed Soomro…

Question-67431

Question Number 67431 by aliesam last updated on 27/Aug/19 Commented by mathmax by abdo last updated on 27/Aug/19 $${if}\:{a}\:{and}\:{b}\:{from}\:{C}\:{the}\:{question}\:{is}\:{done}\:{by}\:{sir}\:{mjs} \\ $$$${if}\:{a}\:{and}\:{b}\:{from}\:{R}\:\:\:{we}\:{have}\:\:\left(\mid\frac{{a}}{{b}}\mid\right)^{\mathrm{2}} −\left(\frac{\mid{a}\mid}{\mid{b}\mid}\right)^{\mathrm{2}} \: \\ $$$$=\mid\frac{{a}^{\mathrm{2}}…