Question Number 67464 by lalitchand last updated on 27/Aug/19 $$\mathrm{prove}\:\:\:\mathrm{Cos}\left(\frac{\mathrm{2}\pi}{\mathrm{7}}\right)+\mathrm{Cos}\left(\frac{\mathrm{4}\pi}{\mathrm{7}}\right)+\mathrm{Cos}\left(\frac{\mathrm{8}\pi}{\mathrm{7}}\right)=−\frac{\mathrm{1}}{\mathrm{2}} \\ $$ Answered by mind is power last updated on 27/Aug/19 $${Z}^{\mathrm{7}} −\mathrm{1}=\mathrm{0} \\ $$$$\Rightarrow\left({z}−\mathrm{1}\right)\left(\mathrm{1}+{z}+{z}^{\mathrm{2}}…
Question Number 67465 by ~ À ® @ 237 ~ last updated on 27/Aug/19 $$ \\ $$$$ \\ $$$$\:\:{let}\:{consider}\:{a}\:{function}\:{g}\:{defined}\:{by}\:\:\:{g}\left({a}\right)=\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\:\frac{{dx}}{\:\sqrt{\left(\mathrm{1}−{x}\right)\left(\mathrm{1}+{ax}\right)}}\:\: \\ $$$${Give}\:{the}\:{defined}\:{Domain}\:{of}\:{g}\:\:{and}\:{simplify}\:{g}. \\ $$…
Question Number 1928 by Yozzi last updated on 24/Oct/15 $${Prove}\:{that},\:{if}\:{p}>{q}>\mathrm{0}\:{and}\:{x}\geqslant\mathrm{0},\:{then} \\ $$$$\:\:\:\:\:\frac{\mathrm{1}}{{p}}\left(\frac{{x}^{{p}} }{{p}+\mathrm{1}}−\mathrm{1}\right)\geqslant\frac{\mathrm{1}}{{q}}\left(\frac{{x}^{{q}} }{{q}+\mathrm{1}}−\mathrm{1}\right).\: \\ $$ Commented by Rasheed Soomro last updated on 24/Oct/15 $${Prove}\:{that},\:{if}\:{p}>{q}>\mathrm{0}\:{and}\:{x}\geqslant\mathrm{0},\:{then}…
Question Number 67462 by ~ À ® @ 237 ~ last updated on 27/Aug/19 $$ \\ $$$$\:{Calculate}\:{when}\:{a},{b}\:{are}\:{positive}\:{reals}\:\:\:{f}\left({a},{b}\right)=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{t}^{{a}} −{t}^{{b}} }{{lnt}}\:{dt}\: \\ $$ Commented by…
Question Number 67463 by ~ À ® @ 237 ~ last updated on 27/Aug/19 $${Find} \\ $$$${Find}\:\:\:{K}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \sqrt{{tan}\theta}\:{d}\theta\: \\ $$ Commented by ~ À…
Question Number 1925 by Yozzi last updated on 24/Oct/15 $${Evaluate}\:{the}\:{following}\:{integral}. \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:{I}=\int_{\mathrm{5}} ^{\mathrm{6}} \frac{{ln}\left(\mathrm{11}{x}+\mathrm{12}\right)}{{x}^{\mathrm{2}} +\mathrm{42}}{dx} \\ $$ Commented by prakash jain last updated on 25/Oct/15…
Question Number 67461 by mathmax by abdo last updated on 27/Aug/19 $${find}\:{the}\:{value}\:{of}\:\sum_{{p}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{p}} }{\left(\mathrm{2}{p}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 67454 by Aditya789 last updated on 27/Aug/19 Commented by mathmax by abdo last updated on 27/Aug/19 $${here}\:{C}_{{r}} \:{mean}\:{C}_{{n}} ^{{r}} \:\:\:\:\:\:{we}\:{have}\:\:\sum_{{r}=\mathrm{0}} ^{{n}} \:{C}_{{n}} ^{{r}}…
Question Number 132991 by aurpeyz last updated on 17/Feb/21 $${A}\:{convex}\:{lens}\:{of}\:{focal}\:{length}\:\mathrm{10}{cm} \\ $$$${is}\:{used}\:{to}\:{form}\:{a}\:{real}\:{image}\:{which}\:{is} \\ $$$${half}\:{the}\:{size}\:{of}\:{the}\:{object}.\:{how}\:{far} \\ $$$${from}\:{the}\:{object}\:{is}\:{the}\:{image}??? \\ $$ Commented by aurpeyz last updated on 17/Feb/21…
Question Number 132987 by mnjuly1970 last updated on 17/Feb/21 $$\:\:\:\:\:\:\:\:\:\:\:\:\:….{mathematical}\:\:{analysis}… \\ $$$$\:{prove}\:\:{that}::\:\:\boldsymbol{\phi}=\int_{\mathrm{0}} ^{\:\infty} \frac{{sin}^{\mathrm{3}} \left({x}\right)}{{x}^{\mathrm{3}} }{dx}=\frac{\mathrm{3}\pi}{\mathrm{8}} \\ $$$$\:\:\:\:\ast\ast\ast\ast………. \\ $$$$ \\ $$ Answered by Dwaipayan…