Menu Close

Author: Tinku Tara

Given-vector-a-i-j-k-c-j-k-a-b-c-and-a-b-3-then-b-

Question Number 132856 by bramlexs22 last updated on 17/Feb/21 $$\mathrm{Given}\:\mathrm{vector}\:\overset{\rightarrow} {{a}}\:=\:\hat {\mathrm{i}}+\hat {\mathrm{j}}+\hat {\mathrm{k}}\:,\:\overset{\rightarrow} {\mathrm{c}}=\hat {\mathrm{j}}−\hat {\mathrm{k}}\:; \\ $$$$\:\overset{\rightarrow} {\mathrm{a}}\:×\:\overset{\rightarrow} {\mathrm{b}}\:=\:\overset{\rightarrow} {\mathrm{c}}\:\mathrm{and}\:\overset{\rightarrow} {\mathrm{a}}.\overset{\rightarrow} {\mathrm{b}}\:=\:\mathrm{3}\:\mathrm{then}\:\mid\overset{\rightarrow} {\mathrm{b}}\mid\:=\:?…

Find-the-point-on-the-paraboloid-z-x-2-y-2-which-is-closest-to-the-point-3-6-4-

Question Number 132853 by EDWIN88 last updated on 17/Feb/21 $$\mathrm{Find}\:\mathrm{the}\:\mathrm{point}\:\mathrm{on}\:\mathrm{the}\:\mathrm{paraboloid}\: \\ $$$$\mathrm{z}\:=\:\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} \:\mathrm{which}\:\mathrm{is}\:\mathrm{closest}\:\mathrm{to}\:\mathrm{the}\:\mathrm{point}\: \\ $$$$\left(\mathrm{3},−\mathrm{6},\mathrm{4}\:\right) \\ $$ Answered by MJS_new last updated on 17/Feb/21…

It-is-required-to-seat-5-men-and-4-women-in-a-row-so-that-the-women-occupy-the-even-place-How-many-such-arrangements-are-possible-

Question Number 132854 by EDWIN88 last updated on 17/Feb/21 $$\mathrm{It}\:\mathrm{is}\:\mathrm{required}\:\mathrm{to}\:\mathrm{seat}\:\mathrm{5}\:\mathrm{men}\:\mathrm{and}\:\mathrm{4}\:\mathrm{women}\: \\ $$$$\mathrm{in}\:\mathrm{a}\:\mathrm{row}\:\mathrm{so}\:\mathrm{that}\:\mathrm{the}\:\mathrm{women}\:\mathrm{occupy}\:\mathrm{the}\:\mathrm{even}\: \\ $$$$\mathrm{place}.\:\mathrm{How}\:\mathrm{many}\:\mathrm{such}\:\mathrm{arrangements}\:\mathrm{are} \\ $$$$\mathrm{possible}\:?\: \\ $$ Answered by bramlexs22 last updated on 17/Feb/21…

Let-P-t-denote-a-given-cubic-polynomial-Find-the-constants-a-1-u-1-a-2-and-u-2-such-that-1-1-P-t-dt-a-1-P-u-1-a-2-P-u-2-

Question Number 1778 by 112358 last updated on 23/Sep/15 $${Let}\:{P}\left({t}\right)\:{denote}\:{a}\:{given}\:{cubic} \\ $$$${polynomial}.\:{Find}\:{the}\:{constants} \\ $$$${a}_{\mathrm{1}} ,{u}_{\mathrm{1}} ,{a}_{\mathrm{2}} \:{and}\:{u}_{\mathrm{2}} \:{such}\:{that} \\ $$$$\int_{−\mathrm{1}} ^{\:\mathrm{1}} {P}\left({t}\right){dt}={a}_{\mathrm{1}} {P}\left({u}_{\mathrm{1}} \right)+{a}_{\mathrm{2}} {P}\left({u}_{\mathrm{2}}…

The-n-positive-numbers-x-1-x-2-x-n-where-n-3-satisfy-x-1-1-1-x-2-x-2-1-1-x-3-x-n-1-1-1-x-n-and-x-n-1-1-x-1-Show-that-x-1-x-2-x-3-x-n-

Question Number 1777 by 112358 last updated on 22/Sep/15 $${The}\:{n}\:{positive}\:{numbers}\:{x}_{\mathrm{1}} ,{x}_{\mathrm{2}} ,…{x}_{{n}} \\ $$$${where}\:{n}\geqslant\mathrm{3},\:{satisfy}\: \\ $$$${x}_{\mathrm{1}} =\mathrm{1}+\frac{\mathrm{1}}{{x}_{\mathrm{2}} },{x}_{\mathrm{2}} =\mathrm{1}+\frac{\mathrm{1}}{{x}_{\mathrm{3}} },\:…\:,\:{x}_{{n}−\mathrm{1}} =\mathrm{1}+\frac{\mathrm{1}}{{x}_{{n}} } \\ $$$${and}\:{x}_{{n}} =\mathrm{1}+\frac{\mathrm{1}}{{x}_{\mathrm{1}}…