Question Number 132832 by mathocean1 last updated on 16/Feb/21 $${f}\left({x}\right)={xtan}^{\mathrm{2}} {x} \\ $$$${find}\:{one}\:{primitive}\:{of}\:{f}\left({x}\right). \\ $$ Answered by Olaf last updated on 17/Feb/21 $$\mathrm{F}\left({x}\right)\:=\:\int{f}\left({x}\right){dx} \\ $$$$\mathrm{F}\left({x}\right)\:=\:\int{x}\mathrm{tan}^{\mathrm{2}}…
Question Number 67299 by Rio Michael last updated on 25/Aug/19 $${G}\left({x}\right)=\:\left({x}+\mathrm{1}\right)\left({x}+\mathrm{3}\right){Q}\left({x}\right)\:+\:{px}\:+{q} \\ $$$$\left.{a}\right)\:{Given}\:{that}\:{G}\left({x}\right)\:{leaves}\:{a}\:{remainder}\:{of}\:\mathrm{8}\:{and}\:−\mathrm{24}\:{when}\:{divided}\:{by}\:\left({x}+\mathrm{1}\right)\:{and}\: \\ $$$$\left({x}+\mathrm{3}\right)\:{respectively},{find}\:{the}\:{remainder}\:{when}\:{G}\left({x}\right)\:{is}\:{divided}\:{by}\:\left({x}+\mathrm{1}\right)\left({x}+\mathrm{3}\right). \\ $$$$\left.{b}\right)\:\:{Given}\:{that}\:{x}+\mathrm{2}\:{is}\:{a}\:{factor}\:{of}\:{G}\left({x}\right)\:{and}\:{that}\:{the}\:{graph}\:{of}\:{G}\left({x}\right)\:{passes}\:{through} \\ $$$${the}\:{point}\:{with}\:{coordinates}\:\left(\mathrm{0},\mathrm{6}\right)\:{find}\:{G}\left({x}\right) \\ $$ Commented by Rasheed.Sindhi last…
Question Number 132835 by mohammad17 last updated on 16/Feb/21 $${prove}\:\mathrm{0}^{\mathrm{0}} =\mathrm{0} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 132834 by mohammad17 last updated on 16/Feb/21 $${Solve}\:{e}^{\mathrm{2}{z}} =\sqrt{\mathrm{3}}−{i}\:\:\:,{z}={x}+{iy} \\ $$ Answered by mathmax by abdo last updated on 20/Feb/21 $$\mid\sqrt{\mathrm{3}}−\mathrm{i}\mid=\mathrm{2}\:\Rightarrow\sqrt{\mathrm{3}}−\mathrm{i}=\mathrm{2}\left(\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{i}\right)\:=\mathrm{2e}^{−\frac{\mathrm{i}\pi}{\mathrm{6}}} =\mathrm{2e}^{\left(−\frac{\mathrm{i}\pi}{\mathrm{6}}+\mathrm{2ik}\pi\right)} \\…
Question Number 67294 by Rio Michael last updated on 25/Aug/19 $${solve}\:{for}\:\:\mathrm{x}\:\mathrm{and}\:\mathrm{y}\:{the}\:{simultaneous}\:{equation} \\ $$$$\:\mathrm{log}_{\mathrm{3}} {x}\:=\:{y}\:=\:\mathrm{log}\left(\mathrm{2}{x}\:−\:\mathrm{1}\right) \\ $$ Commented by mr W last updated on 25/Aug/19 $$\mathrm{log}_{{a}}…
Question Number 1758 by prakash jain last updated on 18/Sep/15 $$\mathrm{Prove}\:\mathrm{that} \\ $$$$\mathrm{sequence}\:\frac{\mathrm{1}}{{p}},\:{p}\:\mathrm{prime}\:\mathrm{number}\:\mathrm{is}\:\mathrm{divergent}. \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 132830 by aupo14 last updated on 16/Feb/21 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 132827 by victoras last updated on 16/Feb/21 Commented by mr W last updated on 16/Feb/21 $${impossible}! \\ $$ Commented by Dwaipayan Shikari last…
Question Number 132826 by mohammad17 last updated on 16/Feb/21 $${prove}\:{Log}\left({z}_{\mathrm{1}} {z}_{\mathrm{2}} \right)={Log}\left({z}_{\mathrm{1}} \right)+{Log}\left({z}_{\mathrm{2}} \right) \\ $$$${if}\:−\pi<{Argz}_{\mathrm{1}} +{Argz}_{\mathrm{2}} <\pi \\ $$$${hwo}\:{can}\:{solve}\:{this} \\ $$ Commented by guyyy…
Question Number 1752 by Rasheed Ahmad last updated on 14/Sep/15 $${Prove}\:{that}: \\ $$$$\left(−{x}\right)\left(−{y}\right)={xy} \\ $$ Commented by 123456 last updated on 15/Sep/15 $${ax}+{bx}=\left({a}+{b}\right){x} \\ $$$$−{x}=−\mathrm{1}×{x}…