Menu Close

Author: Tinku Tara

Prove-disprove-prove-for-an-interval-as-the-case-may-be-x-1-x-lt-x-1-1-x-1-x-N-x-0-Generalization-of-Q-1700-

Question Number 1729 by Rasheed Ahmad last updated on 04/Sep/15 $${Prove}/{disprove}/{prove}\:{for}\:{an} \\ $$$${interval}\:{as}\:{the}\:{case}\:{may}\:{be}: \\ $$$$\left({x}!\right)^{\frac{\mathrm{1}}{{x}}} \:\overset{?} {<}\:\left\{\left({x}+\mathrm{1}\right)!\right\}^{\frac{\mathrm{1}}{{x}+\mathrm{1}}} \:\:,\:{x}\in\mathbb{N}\:\left[{x}\neq\mathrm{0}\right] \\ $$$$\left({Generalization}\:{of}\:{Q}\:\mathrm{1700}\right) \\ $$ Commented by 123456…

dx-1-x-4-1-2-dx-1-ix-2-1-2-dx-1-ix-2-1-2-e-i-pi-4-d-e-i-pi-4-x-1-e-i-pi-4-x-2-1-2-e-i-pi-4-d-e-i-pi-4-x-1-e-i-pi-4-x-2-1-2-e-i-pi-4-ta

Question Number 132799 by Ñï= last updated on 16/Feb/21 $$\int\frac{{dx}}{\mathrm{1}+{x}^{\mathrm{4}} } \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int\frac{{dx}}{\mathrm{1}+{ix}^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{2}}\int\frac{{dx}}{\mathrm{1}−{ix}^{\mathrm{2}} } \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}{e}^{−{i}\frac{\pi}{\mathrm{4}}} \int\frac{{d}\left({e}^{{i}\frac{\pi}{\mathrm{4}}} {x}\right)}{\mathrm{1}+\left({e}^{{i}\frac{\pi}{\mathrm{4}}} {x}\right)^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{2}}{e}^{{i}\frac{\pi}{\mathrm{4}}} \int\frac{{d}\left({e}^{−{i}\frac{\pi}{\mathrm{4}}} \right){x}}{\mathrm{1}+\left({e}^{−{i}\frac{\pi}{\mathrm{4}}} {x}\right)^{\mathrm{2}} }…

0-pi-2-sin-x-cos-x-dx-

Question Number 132798 by metamorfose last updated on 16/Feb/21 $$\overset{\frac{\pi}{\mathrm{2}}} {\int}_{\mathrm{0}} \left(\sqrt{\mathrm{sin}\:\left({x}\right)}+\sqrt{\mathrm{cos}\:\left({x}\right)}\right){dx} \\ $$ Answered by Ñï= last updated on 17/Feb/21 $$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \left(\sqrt{{sinx}}+\sqrt{{cosx}}\right){dx} \\…

Question-1724

Question Number 1724 by Hasan Mohamed last updated on 03/Sep/15 $$ \\ $$ Answered by 123456 last updated on 04/Sep/15 $${f}\left({x}\right)={x}!=\Gamma\left({x}+\mathrm{1}\right) \\ $$$${f}'\left({x}\right)={x}!\psi\left({x}+\mathrm{1}\right) \\ $$$$\psi\left({x}\right)=\frac{{d}}{{dx}}\mathrm{ln}\:\Gamma\left({x}\right)…

Question-67254

Question Number 67254 by TawaTawa last updated on 24/Aug/19 Commented by Rasheed.Sindhi last updated on 24/Aug/19 $$\:\:\:\:\:{Analytical}\:{Method} \\ $$$${x}-{axis}:{Horizanal}\:{Chord} \\ $$$${y}-{axis}:{Vertical}\:{Chord} \\ $$$${Three}\:{points}\:{on}\:{the}\:{circle}: \\ $$$$\:{A}\left(\mathrm{6},\mathrm{0}\right),{B}\left(−\mathrm{2},\mathrm{0}\right)\:\&\:{C}\left(\mathrm{0},−\mathrm{3}\right)…

Integrate-1-3-1-x-dx-ln-x-ln-2-x-1-2-1-e-x-dx-1-e-2x-3-1-2-x-dx-x-1-4-2-x-ln-x-dx-

Question Number 67246 by Learner-123 last updated on 24/Aug/19 $${Integrate}: \\ $$$$\left.\mathrm{1}\right)\:\underset{\mathrm{3}} {\overset{\:\infty} {\int}}\:\frac{\mathrm{1}/{x}\:{dx}}{{ln}\left({x}\right)\sqrt{{ln}^{\mathrm{2}} {x}−\mathrm{1}}} \\ $$$$\left.\mathrm{2}\right)\:\underset{\mathrm{1}} {\overset{\infty} {\int}}\frac{{e}^{{x}} {dx}}{\mathrm{1}+{e}^{\mathrm{2}{x}} } \\ $$$$\left.\mathrm{3}\right)\:\underset{\mathrm{1}} {\overset{\infty} {\int}}\:\frac{\mathrm{2}^{{x}}…

Which-of-the-series-converge-and-which-diverge-Check-by-the-limit-comparison-test-1-n-2-1-n-ln-n-n-2-5-2-n-1-ln-n-n-3-2-3-n-3-1-ln-lnn-4-n-1-

Question Number 67244 by Learner-123 last updated on 24/Aug/19 $${Which}\:{of}\:{the}\:{series}\:{converge}\:{and}\: \\ $$$${which}\:{diverge}?\:{Check}\:{by}\:{the}\:{limit} \\ $$$${comparison}\:{test}. \\ $$$$\left.\mathrm{1}\right)\:\underset{{n}=\mathrm{2}} {\overset{\infty} {\sum}}\:\frac{\mathrm{1}+{n}\:{ln}\left({n}\right)}{{n}^{\mathrm{2}} +\mathrm{5}} \\ $$$$\left.\mathrm{2}\right)\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\:\frac{{ln}\left({n}\right)}{{n}^{\frac{\mathrm{3}}{\mathrm{2}}} } \\…