Question Number 1729 by Rasheed Ahmad last updated on 04/Sep/15 $${Prove}/{disprove}/{prove}\:{for}\:{an} \\ $$$${interval}\:{as}\:{the}\:{case}\:{may}\:{be}: \\ $$$$\left({x}!\right)^{\frac{\mathrm{1}}{{x}}} \:\overset{?} {<}\:\left\{\left({x}+\mathrm{1}\right)!\right\}^{\frac{\mathrm{1}}{{x}+\mathrm{1}}} \:\:,\:{x}\in\mathbb{N}\:\left[{x}\neq\mathrm{0}\right] \\ $$$$\left({Generalization}\:{of}\:{Q}\:\mathrm{1700}\right) \\ $$ Commented by 123456…
Question Number 132802 by Algoritm last updated on 16/Feb/21 Commented by MJS_new last updated on 16/Feb/21 $$\mathrm{you}\:\mathrm{must}\:\mathrm{approximate} \\ $$ Terms of Service Privacy Policy Contact:…
Question Number 132799 by Ñï= last updated on 16/Feb/21 $$\int\frac{{dx}}{\mathrm{1}+{x}^{\mathrm{4}} } \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int\frac{{dx}}{\mathrm{1}+{ix}^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{2}}\int\frac{{dx}}{\mathrm{1}−{ix}^{\mathrm{2}} } \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}{e}^{−{i}\frac{\pi}{\mathrm{4}}} \int\frac{{d}\left({e}^{{i}\frac{\pi}{\mathrm{4}}} {x}\right)}{\mathrm{1}+\left({e}^{{i}\frac{\pi}{\mathrm{4}}} {x}\right)^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{2}}{e}^{{i}\frac{\pi}{\mathrm{4}}} \int\frac{{d}\left({e}^{−{i}\frac{\pi}{\mathrm{4}}} \right){x}}{\mathrm{1}+\left({e}^{−{i}\frac{\pi}{\mathrm{4}}} {x}\right)^{\mathrm{2}} }…
Question Number 132798 by metamorfose last updated on 16/Feb/21 $$\overset{\frac{\pi}{\mathrm{2}}} {\int}_{\mathrm{0}} \left(\sqrt{\mathrm{sin}\:\left({x}\right)}+\sqrt{\mathrm{cos}\:\left({x}\right)}\right){dx} \\ $$ Answered by Ñï= last updated on 17/Feb/21 $$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \left(\sqrt{{sinx}}+\sqrt{{cosx}}\right){dx} \\…
Question Number 1724 by Hasan Mohamed last updated on 03/Sep/15 $$ \\ $$ Answered by 123456 last updated on 04/Sep/15 $${f}\left({x}\right)={x}!=\Gamma\left({x}+\mathrm{1}\right) \\ $$$${f}'\left({x}\right)={x}!\psi\left({x}+\mathrm{1}\right) \\ $$$$\psi\left({x}\right)=\frac{{d}}{{dx}}\mathrm{ln}\:\Gamma\left({x}\right)…
Question Number 67254 by TawaTawa last updated on 24/Aug/19 Commented by Rasheed.Sindhi last updated on 24/Aug/19 $$\:\:\:\:\:{Analytical}\:{Method} \\ $$$${x}-{axis}:{Horizanal}\:{Chord} \\ $$$${y}-{axis}:{Vertical}\:{Chord} \\ $$$${Three}\:{points}\:{on}\:{the}\:{circle}: \\ $$$$\:{A}\left(\mathrm{6},\mathrm{0}\right),{B}\left(−\mathrm{2},\mathrm{0}\right)\:\&\:{C}\left(\mathrm{0},−\mathrm{3}\right)…
Question Number 1716 by Rasheed Soomro last updated on 02/Sep/15 $${Determine}\:{interval}\:\boldsymbol{\mathrm{A}}\:{of}\:{real}\:{numbers}\:{for}\:{which} \\ $$$${a}^{{a}+\mathrm{1}} \geqslant\left({a}+\mathrm{1}\right)^{{a}} \:\:\:\:\:\:{whenever}\:{a}\in\boldsymbol{\mathrm{A}} \\ $$ Commented by Rasheed Ahmad last updated on 03/Sep/15…
Question Number 132785 by liberty last updated on 16/Feb/21 Commented by liberty last updated on 16/Feb/21 $$\:\mathrm{y}=\mathrm{ax}^{\mathrm{4}} +\mathrm{bx}^{\mathrm{3}} +\mathrm{cx}^{\mathrm{2}} +\mathrm{dx}+\mathrm{e} \\ $$ Answered by MJS_new…
Question Number 67246 by Learner-123 last updated on 24/Aug/19 $${Integrate}: \\ $$$$\left.\mathrm{1}\right)\:\underset{\mathrm{3}} {\overset{\:\infty} {\int}}\:\frac{\mathrm{1}/{x}\:{dx}}{{ln}\left({x}\right)\sqrt{{ln}^{\mathrm{2}} {x}−\mathrm{1}}} \\ $$$$\left.\mathrm{2}\right)\:\underset{\mathrm{1}} {\overset{\infty} {\int}}\frac{{e}^{{x}} {dx}}{\mathrm{1}+{e}^{\mathrm{2}{x}} } \\ $$$$\left.\mathrm{3}\right)\:\underset{\mathrm{1}} {\overset{\infty} {\int}}\:\frac{\mathrm{2}^{{x}}…
Question Number 67244 by Learner-123 last updated on 24/Aug/19 $${Which}\:{of}\:{the}\:{series}\:{converge}\:{and}\: \\ $$$${which}\:{diverge}?\:{Check}\:{by}\:{the}\:{limit} \\ $$$${comparison}\:{test}. \\ $$$$\left.\mathrm{1}\right)\:\underset{{n}=\mathrm{2}} {\overset{\infty} {\sum}}\:\frac{\mathrm{1}+{n}\:{ln}\left({n}\right)}{{n}^{\mathrm{2}} +\mathrm{5}} \\ $$$$\left.\mathrm{2}\right)\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\:\frac{{ln}\left({n}\right)}{{n}^{\frac{\mathrm{3}}{\mathrm{2}}} } \\…