Question Number 1656 by Rasheed Soomro last updated on 29/Aug/15 $$\mathrm{Let}\:\mathrm{A},\mathrm{B}\:\mathrm{and}\:\mathrm{C}\:\mathrm{are}\:\mathrm{three}\:\mathrm{statments}.\: \\ $$$$\left(\mathrm{A}\Rightarrow\mathrm{B}\Rightarrow\mathrm{C}\Rightarrow\mathrm{A}\right)\:\overset{?} {\Rightarrow}\left(\mathrm{C}\Rightarrow\mathrm{B}\right)\: \\ $$$$\left(\mathrm{A}\Rightarrow\mathrm{B}\Rightarrow\mathrm{C}\Rightarrow\mathrm{A}\right)\:\overset{?} {\Rightarrow}\left(\mathrm{B}\Rightarrow\mathrm{A}\right)\: \\ $$$$\mathrm{Prove}\:\mathrm{or}\:\mathrm{disprove}. \\ $$ Commented by Yozzian last…
Question Number 132726 by 676597498 last updated on 16/Feb/21 $$\mathrm{use}\:\mathrm{error}\:\mathrm{fxn} \\ $$$$\mathrm{use}\:\mathrm{polar}\:\mathrm{coordinates}\:\mathrm{to}\:\mathrm{find} \\ $$$$\int\mathrm{e}^{−\mathrm{x}^{\mathrm{2}} } \mathrm{dx} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 67189 by mathmax by abdo last updated on 23/Aug/19 $${solve}\:{inside}\:{R}^{\mathrm{3}} \:{the}\:{system}\:\begin{cases}{\mathrm{2}{x}+{y}+{z}\:=\mathrm{1}}\\{{x}+\mathrm{2}{y}+{z}\:=\mathrm{2}}\end{cases} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left\{{x}+{y}+\mathrm{2}{z}\:=\mathrm{3}\right. \\ $$ Answered by MJS last updated on 23/Aug/19 $${D}=\begin{vmatrix}{\mathrm{2}}&{\mathrm{1}}&{\mathrm{1}}\\{\mathrm{1}}&{\mathrm{2}}&{\mathrm{1}}\\{\mathrm{1}}&{\mathrm{1}}&{\mathrm{2}}\end{vmatrix}=\mathrm{4}…
Question Number 67187 by mathmax by abdo last updated on 23/Aug/19 $${let}\:{f}\left({x}\right)\:={arctan}\left({x}^{\mathrm{3}} \right) \\ $$$$\left.\mathrm{1}\right){calculate}\:{f}^{\left({n}\right)} \left({x}\right){and}\:{f}^{\left({n}\right)} \left(\mathrm{0}\right) \\ $$$$\left.\mathrm{2}\right)\:{developp}\:{f}\:{at}\:{integr}\:{serie} \\ $$$$\left.\mathrm{3}\right)\:{calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{arctan}\left({x}^{\mathrm{3}} \right){dx} \\…
Question Number 1643 by 112358 last updated on 28/Aug/15 $${Calculate}\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:{I}\left({a},{b}\right)=\int_{\mathrm{0}} ^{\mathrm{1}} {t}^{{a}} \left(\mathrm{1}−{t}\right)^{{b}} {dt} \\ $$$${given}\:{that}\:{I}\left({a},{b}\right)=\frac{{b}}{{a}+\mathrm{1}}{I}\left({a}+\mathrm{1},{b}−\mathrm{1}\right) \\ $$$$\left({a}>\mathrm{0},{b}>\mathrm{0}\right).\:{Use}\:{the}\:{fact}\:{that} \\ $$$${I}\left({a},{b}\right)={I}\left({a}+\mathrm{1},{b}\right)+{I}\left({a},{b}+\mathrm{1}\right) \\ $$$${and}\:{I}\left({a},{b}\right)={I}\left({b},{a}\right)\: \\…
Question Number 132712 by syamilkamil1 last updated on 16/Feb/21 Answered by mr W last updated on 16/Feb/21 Commented by syamilkamil1 last updated on 16/Feb/21 $${how}\:{you}\:{get}\:\mathrm{60}\:{sir}?…
Question Number 132715 by Dwaipayan Shikari last updated on 16/Feb/21 $$\frac{\mathrm{1}}{\mathrm{1}^{\mathrm{3}} }−\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{3}} }+\frac{\mathrm{1}}{\mathrm{4}^{\mathrm{3}} }−\frac{\mathrm{1}}{\mathrm{5}^{\mathrm{3}} }+\frac{\mathrm{1}}{\mathrm{7}^{\mathrm{3}} }−\frac{\mathrm{1}}{\mathrm{8}^{\mathrm{3}} }+… \\ $$ Answered by Olaf last updated on…
Question Number 132708 by frc2crc last updated on 16/Feb/21 $$\int_{−\infty} ^{\infty} \frac{{x}^{\mathrm{2}} \mathrm{cos}\:\left({px}+{q}\right)}{{x}^{\mathrm{2}} +\left({p}+{q}\right)^{\mathrm{2}} }{dx} \\ $$ Answered by Olaf last updated on 16/Feb/21 $$…
Question Number 1635 by 123456 last updated on 28/Aug/15 $$\mathrm{lets}\:{x}>\mathrm{0},\:\mathrm{and}\:\mathrm{take}\:\mathrm{the}\:\mathrm{sequence}\:{a} \\ $$$${a}_{\mathrm{0}} =\sqrt{{x}} \\ $$$${a}_{{n}+\mathrm{1}} =\sqrt{{x}+{a}_{{n}} } \\ $$$$\mathrm{i}.\mathrm{proof}\:\mathrm{that}\:\mathrm{0}\leqslant{a}_{{n}} \leqslant{a}_{{n}+\mathrm{1}} \\ $$$$\mathrm{ii}.\mathrm{proof}\:\mathrm{that}\:\exists\mathrm{M}\:\mathrm{such}\:\mathrm{that}\:{a}_{{n}} \leqslant\mathrm{M} \\ $$$$\mathrm{iii}.\mathrm{using}\:\mathrm{i}\:\mathrm{and}\:\mathrm{ii}\:\mathrm{proof}\:\mathrm{that}\:\underset{{n}\rightarrow\infty}…
Question Number 67167 by behi83417@gmail.com last updated on 23/Aug/19 $$\boldsymbol{\mathrm{solve}}\:\boldsymbol{\mathrm{for}}\:\boldsymbol{\mathrm{real}}\:\:\boldsymbol{\mathrm{x}}\:\boldsymbol{\mathrm{and}}\:\:\boldsymbol{\mathrm{y}}:\left[\mathrm{a},\mathrm{b}\in\mathrm{R}\right] \\ $$$$\boldsymbol{\mathrm{a}}.\begin{cases}{\boldsymbol{\mathrm{x}}^{\mathrm{3}} +\mathrm{1}=\boldsymbol{\mathrm{y}}^{\mathrm{3}} }\\{\boldsymbol{\mathrm{x}}^{\mathrm{2}} +\mathrm{1}=\boldsymbol{\mathrm{y}}^{\mathrm{2}} }\end{cases}\:\:\:\:\:\:\:\: \\ $$$$\boldsymbol{\mathrm{b}}.\begin{cases}{\boldsymbol{\mathrm{x}}^{\mathrm{3}} +\boldsymbol{\mathrm{x}}^{\mathrm{2}} +\mathrm{1}=\boldsymbol{\mathrm{y}}^{\mathrm{3}} }\\{\boldsymbol{\mathrm{x}}^{\mathrm{2}} +\boldsymbol{\mathrm{x}}+\mathrm{1}=\boldsymbol{\mathrm{y}}^{\mathrm{2}} }\end{cases} \\ $$$$\boldsymbol{\mathrm{c}}.\begin{cases}{\boldsymbol{\mathrm{x}}^{\mathrm{3}}…