Menu Close

Author: Tinku Tara

Question-136656

Question Number 136656 by 0731619177 last updated on 24/Mar/21 Answered by Ñï= last updated on 24/Mar/21 $${y}={x}^{{x}^{{x}^{…} } } ={x}^{{y}} \\ $$$${y}'=\left({e}^{{ylnx}} \right)'={x}^{{y}} \left({y}'{lnx}+\frac{{y}}{{x}}\right)={x}^{{y}} {y}'{lnx}+{yx}^{{y}−\mathrm{1}}…

f-n-x-x-1-x-2x-2-x-nx-n-x-n-N-f-n-x-f-n-1-x-nx-n-x-f-1-x-x-1-x-f-n-1-x-f-n-x-nx-n-x-n-Z-f-0-x-f-1-x-x-1-x

Question Number 5585 by 123456 last updated on 21/May/16 $${f}_{{n}} \left({x}\right)=\frac{{x}}{\mathrm{1}−{x}}+\frac{\mathrm{2}{x}}{\mathrm{2}−{x}}+…+\frac{{nx}}{{n}−{x}} \\ $$$${n}\in\mathbb{N}^{\ast} \\ $$$$−−−−−−−−−−−−−−−− \\ $$$${f}_{{n}} \left({x}\right)={f}_{{n}−\mathrm{1}} \left({x}\right)+\frac{{nx}}{{n}−{x}} \\ $$$${f}_{\mathrm{1}} \left({x}\right)=\frac{{x}}{\mathrm{1}−{x}} \\ $$$${f}_{{n}−\mathrm{1}} \left({x}\right)={f}_{{n}}…

Question-71115

Question Number 71115 by TawaTawa last updated on 11/Oct/19 Answered by mind is power last updated on 11/Oct/19 $$\mathrm{A}.\left(\mathrm{999994}\right)……\left(\mathrm{1000002}\right)=\mathrm{1}\left(\mathrm{1000003}\right) \\ $$$$\mathrm{used}\:\mathrm{wilson}\:\mathrm{theorem}\:\left(\mathrm{p}−\mathrm{1}\right)!=\mathrm{1}\left(\mathrm{p}\right) \\ $$$$\Rightarrow \\ $$$$\Rightarrow\mathrm{A}\left(−\mathrm{1}\right).\left(−\mathrm{2}\right)……\left(−\mathrm{9}\right)=\mathrm{1}\left(\mathrm{1000003}\right)…

Question-136651

Question Number 136651 by mhabs last updated on 24/Mar/21 Answered by Ñï= last updated on 24/Mar/21 $$\int_{\mathrm{0}} ^{\pi/\mathrm{2}} \frac{\mathrm{1}}{\mathrm{1}+\left({a}\mathrm{tan}\:{x}\right)^{\mathrm{2}} }{dx}\overset{{t}=\mathrm{tan}\:{x}} {=}\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{1}}{\mathrm{1}+{a}^{\mathrm{2}} {t}^{\mathrm{2}} }\centerdot\frac{\mathrm{1}}{\mathrm{1}+{t}^{\mathrm{2}}…