Question Number 1418 by Rasheed Ahmad last updated on 04/Aug/15 $${Solve}\:{the}\:{following}\:{compound} \\ $$$${inequation}\:{in}\:{interval}\:\left(\mathrm{0},\:\mathrm{2}\pi\right), \\ $$$${tan}\frac{{x}}{\mathrm{2}}\:\leqslant\:−\mathrm{1}\:\:{and}\:\:{tan}\frac{{x}}{\mathrm{2}}\:<\:\mathrm{0}\:. \\ $$ Commented by 123456 last updated on 31/Jul/15 $$\mathrm{tan}\:\frac{\pi}{\mathrm{4}}=−\mathrm{tan}\:\frac{\mathrm{3}\pi}{\mathrm{4}}=\mathrm{tan}\:\frac{\mathrm{5}\pi}{\mathrm{4}}=−\mathrm{tan}\:\frac{\mathrm{7}\pi}{\mathrm{4}}=\mathrm{1}…
Question Number 1417 by 123456 last updated on 30/Jul/15 $$\mathrm{sin}\:\left(\mathrm{sin}\:{x}\right)\leqslant\mathrm{cos}\:\left(\mathrm{cos}\:{x}\right) \\ $$$${x}\in\left[\mathrm{0},\mathrm{2}\pi\right) \\ $$ Commented by Rasheed Ahmad last updated on 02/Aug/15 $${What}\:{to}\:{do}\:{with}\:{it}?\:{Is}\:{it}\:{an}\:{inequation} \\ $$$${to}\:{solve}?\:{Or}\:{is}\:{it}\:{an}\:{identity}\:{to}…
Question Number 132483 by abdullahquwatan last updated on 14/Feb/21 $$\underset{{x}\rightarrow−\mathrm{2}} {\mathrm{lim}}\frac{\sqrt{{x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{4}}−{x}^{\mathrm{2}} +\mathrm{2}}{{x}^{\mathrm{5}} +\mathrm{32}}\:\mathrm{no}\:\mathrm{hospital} \\ $$ Commented by EDWIN88 last updated on 14/Feb/21 $$\mathrm{what}\:\mathrm{hospital}? \\…
Question Number 132477 by KZ last updated on 14/Feb/21 $${define} \\ $$$${f}\left({x}.{y}\right)= \\ $$$$\left.\left\{\frac{\mathrm{xy}\left(\mathrm{x}^{\mathrm{2}} −\mathrm{y}^{\mathrm{2}} \right)\:}{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }\:{if}\:\left({x}.{y}\right)\neq\right)\mathrm{0}.\mathrm{0}\right) \\ $$$$\:\:\:\:\:\:\:\:\mathrm{0}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{if}\:\left({x}.{y}\right)=\left(\mathrm{0}.\mathrm{0}\right) \\ $$$$ \\ $$$${show}\:{that}\:{f},\frac{\partial{f}}{\partial{x}}\:{and}\:\frac{\partial{f}}{\partial{y}\:\:}\:{are}\: \\…
Question Number 1407 by 112358 last updated on 29/Jul/15 $${Solve}\:{the}\:{following}\:{inequality} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{{sinx}+\mathrm{1}}{{cosx}}\leqslant\mathrm{1} \\ $$$${where}\:\mathrm{0}\leqslant{x}<\mathrm{2}\pi\:,\:{cosx}\neq\mathrm{0} \\ $$ Commented by 123456 last updated on 29/Jul/15 $${f}\left({x}\right)=\frac{\mathrm{sin}\:{x}+\mathrm{1}}{\mathrm{cos}\:{x}} \\…
Question Number 132478 by MathCoder last updated on 14/Feb/21 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 132473 by physicstutes last updated on 14/Feb/21 $$\int\:\frac{{x}\:\mathrm{cosh}\:{x}}{\left(\mathrm{sinh}\:{x}\right)^{\mathrm{2}} }\:{dx} \\ $$ Answered by mathmax by abdo last updated on 14/Feb/21 $$\mathrm{I}=\int\:\frac{\mathrm{xchx}}{\mathrm{sh}^{\mathrm{2}} \mathrm{x}}\mathrm{dx}\:\:\mathrm{by}\:\mathrm{parts}\:\:\mathrm{u}^{'} \:=\frac{\mathrm{chx}}{\mathrm{sh}^{\mathrm{2}}…
Question Number 66938 by Cmr 237 last updated on 20/Aug/19 Commented by mathmax by abdo last updated on 21/Aug/19 $$\left.\mathrm{8}\right){by}\:{parts}\:\:\int\:{ln}\left(\mathrm{1}+{x}^{\mathrm{2}} \right){dx}\:={xln}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)−\int\:{x}\frac{\mathrm{2}{x}}{\mathrm{1}+{x}^{\mathrm{2}} }{dx} \\ $$$$={xln}\left(\mathrm{1}+{x}^{\mathrm{2}}…
Question Number 132475 by Study last updated on 14/Feb/21 $${prove}\:{that}\:\:{x}_{\mathrm{1}} +{x}_{\mathrm{2}} =−\frac{{b}}{{a}} \\ $$$${x}_{\mathrm{1}} {and}\:{x}_{\mathrm{2}} {are}\:{roots}\:{of}\:{ax}^{\mathrm{2}} +{bx}+{c}=\mathrm{0} \\ $$ Commented by MJS_new last updated on…
Question Number 132474 by bemath last updated on 14/Feb/21 $$\:\mathrm{maximum}\:\mathrm{value}\:\mathrm{of}\: \\ $$$$\mathrm{f}\left(\mathrm{x}\right)=\sqrt{\mathrm{4sin}\:\left(\mathrm{x}\right)+\mathrm{1}}\:−\mathrm{cos}\:\left(\mathrm{x}\right) \\ $$$$\mathrm{is}\: \\ $$ Commented by EDWIN88 last updated on 14/Feb/21 Commented by…