Menu Close

Author: Tinku Tara

Q-is-there-any-angle-in-a-circle-

Question Number 1387 by navajyoti.tamuli.tamuli@gmail. last updated on 27/Jul/15 $${Q}.\:{is}\:{there}\:{any}\:{angle}\:{in}\:{a}\:{circle}? \\ $$ Commented by Rasheed Soomro last updated on 28/Jul/15 $${Two}\:{answers}\:{can}\:{be}\:{given}.{Each}\:{has}\:\:{its}\:\:{own}\:{reasoning}. \\ $$$$\left({i}\right)\:{There}\:{are}\:{infinity}\:{number}\:{of}\:{angles}. \\ $$$${Consider}\:{a}\:{polygon}\:{of}\:{n}\:{angles}\:{inscribed}\:{in}\:{a}\:{circle}:…

nice-calculus-0-sin-x-2-ln-x-x-3-2-dx-solution-x-2-t-1-2-0-sin-t-ln-t-t-3-4-dt-t-1-2-1-4-0-

Question Number 132459 by mnjuly1970 last updated on 14/Feb/21 $$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:….\:{nice}\:\:\:{calculus}\:…. \\ $$$$\:\:\:\:\:\:\:\:\:\boldsymbol{\phi}=\int_{\mathrm{0}} ^{\:\infty} \frac{{sin}\left({x}^{\mathrm{2}} \right){ln}\left({x}\right)}{{x}^{\frac{\mathrm{3}}{\mathrm{2}}} }{dx}= \\ $$$$\:\:{solution}: \\ $$$$\boldsymbol{\phi}\overset{{x}^{\mathrm{2}} ={t}} {=}\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\:\infty} \frac{{sin}\left({t}\right){ln}\left(\sqrt{{t}}\:\right)}{{t}^{\frac{\mathrm{3}}{\mathrm{4}}} }\:\frac{{dt}}{{t}^{\frac{\mathrm{1}}{\mathrm{2}}}…

Find-all-positive-integers-n-such-that-n-2014-and-3-n-1-n-will-be-a-perfect-square-integer-

Question Number 1379 by 314159 last updated on 27/Jul/15 $${Find}\:{all}\:{positive}\:{integers}\:{n}\:{such}\:{that}\:\: \\ $$$${n}\leqslant\mathrm{2014}\:{and}\:\mathrm{3}^{{n}−\mathrm{1}} .{n}\:\:{will}\:{be}\:{a}\:{perfect}\:{square}\:{integer}. \\ $$ Commented by 123456 last updated on 26/Jul/15 $${m}\equiv\mathrm{0},\mathrm{1},\mathrm{2},\mathrm{3},\mathrm{4}\left(\mathrm{mod}\:\mathrm{5}\right) \\ $$$${n}={m}^{\mathrm{2}}…

Four-sides-mAB-mBC-mCD-and-mDA-of-a-quadrilateral-ABCD-have-measurement-a-b-c-and-d-units-respectively-Let-the-sum-of-any-adjacent-sides-is-not-equal-to-the

Question Number 1378 by Rasheed Soomro last updated on 28/Jul/15 $$\:\:\:\:\:{Four}\:{sides}\:{m}\overline {\boldsymbol{\mathrm{AB}}}\:,\:{m}\overline {\boldsymbol{\mathrm{BC}}}\:,\:{m}\overline {\boldsymbol{\mathrm{CD}}}\:\:{and}\:\:{m}\overline {\boldsymbol{\mathrm{DA}}}\:{of}\:{a}\:\boldsymbol{\mathrm{quadrilateral}}\: \\ $$$$\boldsymbol{\mathrm{ABCD}}\:\:{have}\:{measurement}\:\boldsymbol{{a}}\:,\:\boldsymbol{{b}}\:,\:\boldsymbol{{c}}\:\:{and}\:\boldsymbol{{d}}\:{units}\:{respectively}. \\ $$$$\:\:\:\:\:{Let}\:{the}\:{sum}\:{of}\:{any}\:{adjacent}\:{sides}\:{is}\:{not}\:{equal}\:{to}\:{the}\:{sum}\:{of} \\ $$$${remaining}\:{adjacent}\:{sides}\:\:{and}\:{measurement}\:{of}\:{all}\:{the}\:{sides}\: \\ $$$${is}\:{positive}\:{and}\:{real}. \\ $$$$\:\:\:\:\:\:{What}\:{could}\:{be}\:{the}\:{possible}\:{minimum}\:{and}\:{maximum}\:{values}…

P-n-1-999-1-2n-1-2n-Q-n-1-999-1-999-n-1999-n-P-Q-

Question Number 66910 by naka3546 last updated on 20/Aug/19 $${P}\:\:=\:\:\underset{{n}=\mathrm{1}} {\overset{\mathrm{999}} {\sum}}\:\frac{\mathrm{1}}{\left(\mathrm{2}{n}−\mathrm{1}\right)\left(\mathrm{2}{n}\right)} \\ $$$${Q}\:\:=\:\:\underset{{n}=\mathrm{1}} {\overset{\mathrm{999}} {\sum}}\:\frac{\mathrm{1}}{\left(\mathrm{999}+{n}\right)\left(\mathrm{1999}−{n}\right)} \\ $$$$\frac{{P}}{{Q}}\:\:=\:\:? \\ $$ Commented by naka3546 last updated…

lets-f-R-R-and-g-R-R-two-continuous-and-differentiable-functions-suppose-that-g-0-0-then-compute-h-x-lim-x-0-g-f-x-x-f-x-x-

Question Number 1375 by 123456 last updated on 26/Jul/15 $$\mathrm{lets}\:{f}:\mathbb{R}\rightarrow\mathbb{R}\:\mathrm{and}\:{g}:\mathbb{R}\rightarrow\mathbb{R}\:\mathrm{two}\:\mathrm{continuous}\:\mathrm{and}\:\mathrm{differentiable}\:\mathrm{functions} \\ $$$$\mathrm{suppose}\:\mathrm{that}\:{g}\left(\mathrm{0}\right)=\mathrm{0},\:\mathrm{then}\:\mathrm{compute} \\ $$$${h}\left({x}\right)=\underset{\Delta{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{{g}\left({f}\left({x}+\Delta{x}\right)−{f}\left({x}\right)\right)}{\Delta{x}} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com

x-2019-2019-x-2018-2018-1-3-x-2017-2017-1-4-x-2016-2016-1-5-dx-

Question Number 66909 by naka3546 last updated on 20/Aug/19 $$\int\:\:\frac{\sqrt{{x}^{\mathrm{2019}} +\mathrm{2019}}\:\:+\:\:\sqrt[{\mathrm{3}}]{{x}^{\mathrm{2018}} +\mathrm{2018}}}{\:\sqrt[{\mathrm{4}}]{{x}^{\mathrm{2017}} +\mathrm{2017}}\:\:+\:\:\sqrt[{\mathrm{5}}]{{x}^{\mathrm{2016}} +\mathrm{2016}}}\:\:{dx}\:\:=\:\:? \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com

Intergrate-I-t-2-1-t-4-dt-

Question Number 66906 by Kunal12588 last updated on 20/Aug/19 $${Intergrate}\:{I}=\int\:\frac{{t}^{\mathrm{2}} }{\mathrm{1}+{t}^{\mathrm{4}} }\:{dt} \\ $$ Commented by Prithwish sen last updated on 20/Aug/19 $$\frac{\mathrm{1}}{\mathrm{2i}}\int\frac{\mathrm{1}}{\mathrm{1}−\mathrm{it}^{\mathrm{2}} }\:−\:\frac{\mathrm{1}}{\mathrm{1}+\mathrm{it}^{\mathrm{2}} }\:\mathrm{dt}=\frac{\mathrm{1}}{\mathrm{2}}\left[−\mathrm{sin}^{−\mathrm{1}}…

A-vessel-containing-water-has-the-shape-of-and-inverted-right-circular-cone-with-base-radius-2m-and-height-5m-The-water-flows-from-the-apex-of-the-cone-at-a-constant-rate-of-0-2-m-3-min-Find-the-r

Question Number 132440 by liberty last updated on 14/Feb/21 $$\mathrm{A}\:\mathrm{vessel}\:\mathrm{containing}\:\mathrm{water}\:\mathrm{has}\:\mathrm{the}\: \\ $$$$\mathrm{shape}\:\mathrm{of}\:\mathrm{and}\:\mathrm{inverted}\:\mathrm{right}\:\mathrm{circular} \\ $$$$\mathrm{cone}\:\mathrm{with}\:\mathrm{base}\:\mathrm{radius}\:\mathrm{2m}\:\mathrm{and}\:\mathrm{height}\:\mathrm{5m} \\ $$$$\mathrm{The}\:\mathrm{water}\:\mathrm{flows}\:\mathrm{from}\:\mathrm{the}\:\mathrm{apex} \\ $$$$\mathrm{of}\:\mathrm{the}\:\mathrm{cone}\:\mathrm{at}\:\mathrm{a}\:\mathrm{constant}\:\mathrm{rate}\: \\ $$$$\mathrm{of}\:\mathrm{0}.\mathrm{2}\:\mathrm{m}^{\mathrm{3}} /\mathrm{min}.\:\mathrm{Find}\:\mathrm{the}\:\mathrm{rate}\:\mathrm{at} \\ $$$$\mathrm{which}\:\mathrm{the}\:\mathrm{water}\:\mathrm{level}\:\mathrm{is}\:\mathrm{dropping} \\ $$$$\mathrm{when}\:\mathrm{the}\:\mathrm{depth}\:\mathrm{of}\:\mathrm{the}\:\mathrm{water}\:\mathrm{is}…