Question Number 1354 by Rasheed Ahmad last updated on 25/Jul/15 $${Slightly}\:{modified}\:{form}\:{of}\:{Q}\:\mathrm{1343}. \\ $$$$\mathrm{3}^{{log}\left(\mathrm{3}{x}+\mathrm{4}\right)} =\mathrm{4}^{{log}\left(\mathrm{4}{x}+\mathrm{3}\right)} ,{solve}\:{for}\:{x}. \\ $$ Commented by prakash jain last updated on 25/Jul/15…
Question Number 1352 by 112358 last updated on 24/Jul/15 $${Solve}\:{the}\:{following}\:{DE}\:: \\ $$$${y}\frac{{dy}}{{dx}}+\mathrm{6}{x}+\mathrm{5}{y}=\mathrm{0}\:\:\:\:\:\left({x}\neq\mathrm{0},{y}\neq\mathrm{0}\right) \\ $$ Answered by imhunter last updated on 27/Jul/15 $${q}.{no}.\mathrm{1352}\:\:\:\:\:\:\:\:\:\:\:{y}\:{dy}/{dx}=−\mathrm{6}{x}−\mathrm{5}{y} \\ $$$$ \\…
Question Number 1351 by 123456 last updated on 24/Jul/15 $$\mathcal{W}\left\{{f}\left({x}\right)\right\}\left({t}\right)=\underset{\mathrm{0}} {\overset{\mathrm{1}/{t}} {\int}}{f}\left({x}\right)\mathrm{ln}\left({xt}\right){dx},{t}>\mathrm{0} \\ $$$$\mathcal{W}\left\{{f}\left({x}\right)+{g}\left({x}\right)\right\}\left({t}\right)\overset{?} {=}\mathcal{W}\left\{{f}\left({x}\right)\right\}\left({t}\right)+\mathcal{W}\left\{{g}\left({x}\right)\right\}\left({t}\right) \\ $$$$\mathcal{W}\left\{{cf}\left({x}\right)\right\}\left({t}\right)\overset{?} {=}{c}\mathcal{W}\left\{{f}\left({x}\right)\right\}\left({t}\right) \\ $$$$\mathcal{W}\left\{\mathrm{1}\right\}\left({t}\right)=? \\ $$$$\mathcal{W}\left\{{x}\right\}\left({t}\right)=? \\ $$$$\mathcal{W}\left\{{x}^{{n}} \right\}\left({t}\right)=?,{n}\in\mathbb{N}…
Question Number 1350 by 112358 last updated on 24/Jul/15 $${Evaluate}\:{the}\:{following}\:{integral}: \\ $$$${I}=\int_{\pi/\mathrm{4}} ^{\:\pi/\mathrm{2}} \left({cos}\mathrm{2}{x}+{sin}\mathrm{2}{x}\right){ln}\left({cosx}+{sinx}\right)\:{dx} \\ $$ Commented by prakash jain last updated on 25/Jul/15 $$\int\mathrm{sin}\:\mathrm{2}{x}\mathrm{ln}\:\left(\mathrm{cos}\:{x}+\mathrm{sin}\:{x}\right){dx}…
Question Number 132422 by john_santu last updated on 14/Feb/21 $$\mathrm{Given}\:\mathrm{P}\left(\mathrm{x}\right)\:\mathrm{is}\:\mathrm{polynomial}. \\ $$$$\:\mathrm{If}\:\mathrm{P}\left(\mathrm{x}+\mathrm{1}\right)\:+\:\frac{\mathrm{P}\left(\mathrm{x}\right)}{\mathrm{x}}\:=\:\left(\mathrm{x}+\mathrm{1}\right)^{\mathrm{2}} −\mathrm{2} \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\frac{\mathrm{P}\left(\mathrm{x}\right)}{\mathrm{x}} \\ $$ Answered by bemath last updated on 14/Feb/21 Terms…
Question Number 1347 by prakash jain last updated on 24/Jul/15 $$\mathrm{Solve}\:\mathrm{the}\:\mathrm{following}\:\mathrm{DE} \\ $$$$\frac{{dy}}{{dx}}+\frac{{c}_{\mathrm{1}} }{{yx}^{\mathrm{2}} }={c}_{\mathrm{2}} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 132418 by MJS_new last updated on 14/Feb/21 $$\mathrm{to}\:\mathrm{Tinkutara} \\ $$$$\mathrm{strange}\:\mathrm{error}.\:\mathrm{try}\:\mathrm{to}\:\mathrm{edit}/\mathrm{comment}\:\mathrm{my} \\ $$$$\mathrm{answer}\:\mathrm{to}\:\mathrm{question}\:\mathrm{132402} \\ $$$$\mathrm{the}\:\mathrm{last}\:\mathrm{line}\:\mathrm{expands}\:\mathrm{in}\:\mathrm{height}\:\mathrm{to}\:\mathrm{infinity} \\ $$$$\mathrm{at}\:\mathrm{least}\:\mathrm{on}\:\mathrm{my}\:\mathrm{device}… \\ $$ Commented by mr W last…
Question Number 1343 by Rasheed Soomro last updated on 24/Jul/15 $$\mathrm{3}^{{log}\:\mathrm{3}{x}+\mathrm{4}} =\mathrm{4}^{{log}\:\mathrm{4}{x}+\mathrm{3}} \\ $$ Answered by 112358 last updated on 24/Jul/15 $${Taking}\:{logs}\:{to}\:{base}\:{e}\:{on}\:{both}\:{sides} \\ $$$$\Rightarrow\left({log}\mathrm{3}{x}+\mathrm{4}\right){ln}\mathrm{3}=\left({log}\mathrm{4}{x}+\mathrm{3}\right){ln}\mathrm{4} \\…
Question Number 132414 by john_santu last updated on 14/Feb/21 Commented by john_santu last updated on 14/Feb/21 $$\underline{\mathrm{super}\:\mathrm{nice}\:\mathrm{integral}}\: \\ $$ Answered by liberty last updated on…
Question Number 1339 by 123456 last updated on 24/Jul/15 $${f}:\mathbb{C}\rightarrow\mathbb{C},{z}_{\mathrm{0}} \in\mathbb{C}\:\mathrm{such}\:\mathrm{that} \\ $$$${f}\left({z}\right)−{f}\left({z}_{\mathrm{0}} \right)=\left({z}−{z}_{\mathrm{0}} \right){f}\left({z}−{z}_{\mathrm{0}} \right) \\ $$$$\mathrm{does}\:\underset{{z}\rightarrow{z}_{\mathrm{0}} } {\mathrm{lim}}{f}\left({z}\right)={f}\left({z}_{\mathrm{0}} \right)? \\ $$ Commented by…