Menu Close

Author: Tinku Tara

find-general-solution-y-64x-y-2-

Question Number 132398 by bramlexs22 last updated on 14/Feb/21 $$\mathrm{find}\:\mathrm{general}\:\mathrm{solution}\:\:\mathrm{y}'\:=\:\left(\mathrm{64x}+\mathrm{y}\right)^{\mathrm{2}} \: \\ $$ Answered by EDWIN88 last updated on 14/Feb/21 $$\mathrm{let}\:\mathrm{v}\:=\:\mathrm{64x}+\mathrm{y}\:\Leftrightarrow\frac{\mathrm{dv}}{\mathrm{dx}}\:=\:\mathrm{64}+\frac{\mathrm{dy}}{\mathrm{dx}} \\ $$$$\mathrm{or}\:\frac{\mathrm{dy}}{\mathrm{dx}}\:=\:\frac{\mathrm{dv}}{\mathrm{dx}}−\mathrm{64}\: \\ $$$$\:\Leftrightarrow\:\frac{\mathrm{dv}}{\mathrm{dx}}\:\:−\:\mathrm{64}\:=\:\mathrm{v}^{\mathrm{2}}…

Two-towns-T-and-S-are-300-km-apart-Two-buses-A-and-B-started-from-T-at-the-same-time-travelling-towards-S-Bus-B-travelling-at-an-average-speed-of-10km-h-greater-than-that-of-A-reached-S-1-1-4-hour

Question Number 66856 by John Kaloki Musau last updated on 20/Aug/19 $${Two}\:{towns}\:{T}\:{and}\:{S}\:{are}\:\mathrm{300}\:{km}\:{apart}. \\ $$$${Two}\:{buses}\:{A}\:{and}\:{B}\:{started}\:{from} \\ $$$${T}\:{at}\:{the}\:{same}\:{time}\:{travelling}\:{towards} \\ $$$${S}.\:{Bus}\:{B},\:{travelling}\:{at}\:{an}\:{average} \\ $$$${speed}\:{of}\:\mathrm{10}{km}/{h}\:{greater}\:{than}\:{that} \\ $$$${of}\:{A}\:{reached}\:{S}\:\mathrm{1}\frac{\mathrm{1}}{\mathrm{4}}\:{hours}\:{earlier}. \\ $$$$\left({a}\right)\:{Find}\:{the}\:{average}\:{speed}\:{of}\:{A} \\…

C-2-R-x-y-x-y-x-y-0-x-y-x-y-y-x-x-z-x-y-y-z-x-C-y-C-z-C-

Question Number 1318 by 123456 last updated on 22/Jul/15 $$\eta:\mathbb{C}^{\mathrm{2}} \rightarrow\mathbb{R}_{+} \\ $$$$\eta\left({x},{y}\right)=\mid\mid{x}\mid−\mid{y}\mid\mid \\ $$$$\eta\left({x},{y}\right)=\mathrm{0}\overset{?} {\Leftrightarrow}{x}={y} \\ $$$$\eta\left({x},{y}\right)\overset{?} {=}\eta\left({y},{x}\right) \\ $$$$\eta\left({x},{z}\right)\overset{?} {\leqslant}\eta\left({x},{y}\right)+\eta\left({y},{z}\right) \\ $$$${x}\in\mathbb{C} \\…

Question-66852

Question Number 66852 by John Kaloki Musau last updated on 20/Aug/19 Commented by John Kaloki Musau last updated on 20/Aug/19 The cross-section of a head of a bolt is the form of a regular hexagon as shown in the figure below. Determine the area of the cross-section. Commented by John Kaloki…