Menu Close

Author: Tinku Tara

What-is-degree-of-x-y-x-and-y-are-both-variables-Is-x-y-and-a-constant-of-same-degree-

Question Number 1260 by Rasheed Ahmad last updated on 18/Jul/15 $$\mathrm{What}\:\mathrm{is}\:\mathrm{degree}\:\mathrm{of}\:\frac{\mathrm{x}}{\mathrm{y}}\:?\:\left(\mathrm{x}\:\mathrm{and}\:\mathrm{y}\:\mathrm{are}\:\mathrm{both}\:\mathrm{variables}\right) \\ $$$$\mathrm{Is}\:\frac{\mathrm{x}}{\mathrm{y}}\:\:\mathrm{and}\:\mathrm{a}\:\mathrm{constant}\:\mathrm{of}\:\mathrm{same}\:\mathrm{degree}? \\ $$ Commented by prakash jain last updated on 18/Jul/15 $$\mathrm{Degree}\:\mathrm{of}\:\mathrm{rational}\:\mathrm{expression}\:\mathrm{is}\:\mathrm{the}\:\mathrm{degree} \\…

lim-x-1-p-x-x-2-x-3-x-p-x-1-

Question Number 132328 by liberty last updated on 13/Feb/21 $$\:\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\:\frac{\mathrm{p}−\mathrm{x}−\mathrm{x}^{\mathrm{2}} −\mathrm{x}^{\mathrm{3}} −…−\mathrm{x}^{\mathrm{p}} }{\mathrm{x}−\mathrm{1}}\:=? \\ $$ Answered by EDWIN88 last updated on 13/Feb/21 $$\:\mathrm{The}\:\mathrm{limit}\:\mathrm{is}\:\mathrm{form}\:\frac{\mathrm{0}}{\mathrm{0}} \\…

X-F-X-X-C-F-X-C-can-be-plotted-in-R-2-Im-on-Y-Real-on-X-axes-as-a-directed-line-segment-X-F-X-This-has-the-advantage-of-showing-vector-ffields-fixed-points-and-bifurcat

Question Number 1255 by e.nolley@ieee.org last updated on 18/Jul/15 $$\left(\mathrm{X},\mathrm{F}\left(\mathrm{X}\right)\right),\:\mathrm{X}\in{C},\:\mathrm{F}\left(\mathrm{X}\right)\in{C},\:\:\mathrm{can}\:\mathrm{be}\:\: \\ $$$$\mathrm{plotted}\:\mathrm{in}\:\mathrm{R}^{\mathrm{2}} \:\left(\mathrm{Im}\:\mathrm{on}\:\mathrm{Y},\:\mathrm{Real}\:\mathrm{on}\:\mathrm{X}\right. \\ $$$$\left.\mathrm{axes}\right)\:\mathrm{as}\:\mathrm{a}\:\mathrm{directed}\:\mathrm{line}\:\mathrm{segment}, \\ $$$$\overset{} {\:}\overset{} {\left(\mathrm{X}\right)−−\gg\left(\mathrm{F}\left(\mathrm{X}\right)\right)}.\:\mathrm{This}\:\mathrm{has} \\ $$$$\mathrm{the}\:\mathrm{advantage}\:\mathrm{of}\:\mathrm{showing}\:\mathrm{vector}\: \\ $$$$\mathrm{ffields},\:\mathrm{fixed}\:\mathrm{points}\:\mathrm{and}\:\mathrm{bifurcations}. \\ $$$$…

advanced-calculus-evaluation-0-ln-1-x-x-1-x-2-dx-solution-0-1-ln-1-x-x-1-x-2-dx-1-1-ln-1-x-x-1-x

Question Number 132324 by mnjuly1970 last updated on 13/Feb/21 $$\:\:\:\:\:\:\:\:\:\:\:\:….{advanced}\:\:\:{calculus}… \\ $$$$\:\:\:{evaluation}\:: \\ $$$$\:\:\:\:\:\:\boldsymbol{\phi}=\int_{\mathrm{0}\:^{\:\:} } ^{\:\infty} \frac{{ln}\left(\mathrm{1}+{x}\right)}{{x}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}\:{dx} \\ $$$$\:\:\:\:{solution}: \\ $$$$\:\:\boldsymbol{\phi}=\left[\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{{ln}\left(\mathrm{1}+{x}\right)}{{x}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}{dx}=\boldsymbol{\phi}_{\mathrm{1}}…