Menu Close

Author: Tinku Tara

2-2-

Question Number 1181 by 22 last updated on 11/Jul/15 $$\sqrt{\mathrm{2}+\sqrt{\mathrm{2}}}=? \\ $$ Answered by Rasheed Ahmad last updated on 24/Jul/15 $${In}\:{certain}\:{cases}\:\sqrt{{a}+{b}\sqrt{{c}}\:}\:{can}\:{be} \\ $$$${simplified}\:{into}\:{p}+{q}\sqrt{{c}}\:{form}\left({not}\right. \\ $$$$\left.{in}\:{all}\:{cases}\right).\:{The}\:{procedure}\:{is}\:{as}…

In-a-60-0-prism-of-refractive-index-1-5-calculate-the-angle-of-minimum-deviation-when-light-is-refracted-throuh-the-prism-a-40-2-b-37-5-c-37-2-d-40-5-e-40-6-

Question Number 132248 by aurpeyz last updated on 12/Feb/21 $$ \\ $$$${In}\:{a}\:\mathrm{60}^{\mathrm{0}} \:{prism}\:{of}\:{refractive}\:{index}\:\mathrm{1}.\mathrm{5} \\ $$$${calculate}\:{the}\:{angle}\:{of}\:{minimum}\: \\ $$$${deviation}\:{when}\:{light}\:{is}\:{refracted} \\ $$$${throuh}\:{the}\:{prism} \\ $$$$\left({a}\right)\:\mathrm{40}.\mathrm{2}\:\left({b}\right)\:\mathrm{37}.\mathrm{5}\:\left({c}\right)\:\mathrm{37}.\mathrm{2}\:\left({d}\right)\:\mathrm{40}.\mathrm{5}\:\left({e}\right)\mathrm{40}.\mathrm{6} \\ $$ Commented by…

What-is-the-set-Z-8-0-I-met-this-notation-in-a-question-asking-whether-or-not-the-set-Z-8-0-forms-a-group-under-multiplication-mod-8-

Question Number 1171 by 112358 last updated on 09/Jul/15 $${What}\:{is}\:{the}\:{set}\:\mathbb{Z}_{\mathrm{8}} −\left\{\mathrm{0}\right\}?\:{I}\:{met} \\ $$$${this}\:{notation}\:{in}\:{a}\:{question}\:{asking} \\ $$$${whether}\:{or}\:{not}\:{the}\:{set}\:\mathbb{Z}_{\mathrm{8}} −\left\{\mathrm{0}\right\} \\ $$$${forms}\:{a}\:{group}\:{under}\: \\ $$$${multiplication}\:\left({mod}\:\mathrm{8}\right). \\ $$ Answered by 123456…

lim-x-0-tan-2x-pi-4-2tan-x-pi-4-tan-pi-4-sin-2x-pi-4-2sin-x-pi-4-sin-pi-4-

Question Number 132240 by bemath last updated on 12/Feb/21 $$\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{tan}\:\left(\mathrm{2x}+\frac{\pi}{\mathrm{4}}\right)−\mathrm{2tan}\:\left(\mathrm{x}+\frac{\pi}{\mathrm{4}}\right)+\mathrm{tan}\:\frac{\pi}{\mathrm{4}}}{\mathrm{sin}\:\left(\mathrm{2x}+\frac{\pi}{\mathrm{4}}\right)−\mathrm{2sin}\:\left(\mathrm{x}+\frac{\pi}{\mathrm{4}}\right)+\mathrm{sin}\:\frac{\pi}{\mathrm{4}}}\:? \\ $$$$ \\ $$ Answered by EDWIN88 last updated on 13/Feb/21 $$\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{2sec}\:^{\mathrm{2}} \left(\mathrm{2x}+\frac{\pi}{\mathrm{4}}\right)−\mathrm{2sec}\:^{\mathrm{2}}…