Question Number 1055 by 123456 last updated on 24/May/15 $$\:{f}:\left[\mathrm{0},\mathrm{1}\right]\rightarrow\mathbb{R} \\ $$$${g}:\left[\mathrm{0},\mathrm{1}\right]×\mathbb{N}\rightarrow\mathbb{R} \\ $$$${g}_{{n}} \left({x}\right)={f}\left[{g}_{{n}−\mathrm{1}} \left({x}\right)\right] \\ $$$${g}_{\mathrm{0}} \left({x}\right)={x} \\ $$$$\mathscr{A}\left\{{f}\right\}\left({n}\right)=\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}{f}\left({t}\right){g}_{{n}} \left({t}\right){dt} \\…
Question Number 132124 by Chhing last updated on 11/Feb/21 $$ \\ $$$$\:\:\:\mathrm{Calculate} \\ $$$$\:\:\:\:\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{4}}} \sqrt{\frac{\mathrm{tan}\left(\mathrm{x}\right)+\mathrm{tan}^{\mathrm{2}} \left(\mathrm{x}\right)}{\mathrm{tan}\left(\mathrm{x}\right)−\mathrm{tan}^{\mathrm{2}} \left(\mathrm{x}\right)}}\:\mathrm{cos}\left(\mathrm{x}\right)\mathrm{dx} \\ $$$$\:\: \\ $$ Commented by liberty…
Question Number 1054 by 123456 last updated on 24/May/15 $$\mathrm{L}\frac{{di}}{{dt}}+\mathrm{R}{i}+\frac{\mathrm{1}}{{C}}\underset{\mathrm{0}} {\overset{{t}} {\int}}{idt}=\mathrm{E} \\ $$$${i}\left(\mathrm{0}\right)=\mathrm{0} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 66589 by Tanmay chaudhury last updated on 17/Aug/19 $$\int\frac{{sinx}}{\mathrm{1}+{sinx}+{sin}\mathrm{2}{x}}{dx} \\ $$ Commented by MJS last updated on 17/Aug/19 $$\mathrm{Weierstrass}\:\left[{t}=\mathrm{tan}\:\frac{{x}}{\mathrm{2}}\:\rightarrow\:{dx}=\frac{\mathrm{2}{dt}}{{t}^{\mathrm{2}} +\mathrm{1}}\right]\:\mathrm{leads}\:\mathrm{to} \\ $$$$\mathrm{4}\int\frac{{t}}{\left({t}+\mathrm{1}\right)\left({t}^{\mathrm{3}} −\mathrm{3}{t}^{\mathrm{2}}…
Question Number 132121 by abdullahquwatan last updated on 11/Feb/21 $$\int_{\mathrm{2}} ^{\mathrm{8}} \frac{\sqrt{{x}}}{\:\sqrt{\mathrm{10}−{x}}\:+\sqrt{{x}}}\:\mathrm{dx} \\ $$ Commented by Dwaipayan Shikari last updated on 11/Feb/21 $$\mathrm{3} \\ $$…
Question Number 1050 by tera last updated on 23/May/15 $${jika}\:\alpha\:{dan}\:\beta\:{adalah}\:{akar}−{akar} \\ $$$${persamaan}\:{x}^{\mathrm{2}} +{x}+\mathrm{1}=\mathrm{0}\:{maka}\: \\ $$$${nilai}\:\alpha^{\mathrm{2013}} +\beta^{\mathrm{2301}} =….. \\ $$$${a}.−\mathrm{2}\:\:\:{c}.\mathrm{0}\:\:\:\:{e}.\mathrm{2} \\ $$$$ \\ $$$${b}.−\mathrm{1}\:\:\:{d}.\mathrm{1} \\ $$…
Question Number 132123 by mohammad17 last updated on 11/Feb/21 Answered by liberty last updated on 11/Feb/21 $$\left(\mathrm{1}\right)\mathrm{c}\: \\ $$$$\:\int_{−\mathrm{1}} ^{\:\mathrm{0}} \mathrm{0}.\mathrm{2}\:\mathrm{dy}\:+\:\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\:\left(\mathrm{0}.\mathrm{2}+\mathrm{cy}\right)\mathrm{dy}=\mathrm{1} \\ $$$$\left.\:\left.\mathrm{0}.\mathrm{2y}\:\right]_{−\mathrm{1}}…
Question Number 132117 by aurpeyz last updated on 11/Feb/21 $${Express}\:{P}=\left(\mathrm{6}{N}\:\mathrm{060}^{\mathrm{0}} \right)\:{in}\:{the}\:{form} \\ $$$${ai}+{sj}\:{where}\:{a}\:{and}\:{s}\:{are}\:{scalers}. \\ $$$$\left({a}\right)\:\mathrm{3}\sqrt{\mathrm{3}}{i}+\mathrm{3}{j}\:\left({b}\right)\:\mathrm{3}\sqrt{\mathrm{3}}{i}−\mathrm{3}{j}\:\left({c}\right)\:\mathrm{3}{i}+\mathrm{3}{j} \\ $$$$\left({d}\right)\:\mathrm{3}{i}−\mathrm{3}{j} \\ $$ Commented by aurpeyz last updated on…
Question Number 1047 by 112358 last updated on 23/May/15 $${Simplify}\:{the}\:{following} \\ $$$${expression}\:{using}\:{the}\:{laws}\:{of}\: \\ $$$${Boolean}\:{algebra}: \\ $$$$\left({x}\wedge\backsim{y}\right)\vee\left(\backsim{y}\wedge\backsim{z}\right)\vee\left(\backsim{x}\wedge\backsim{z}\right)\:. \\ $$$$ \\ $$ Commented by prakash jain last…
Question Number 132116 by aurpeyz last updated on 11/Feb/21 $${find}\:{the}\:{magnitude}\:{and}\:{direction}\:{of} \\ $$$${the}\:{vector}\:{r}=\mathrm{3}{i}−\mathrm{4}{j}\:{to}\:{the}\:{nearest}\: \\ $$$${degree} \\ $$$$\left({a}\right)\:\mathrm{7}{N}\:\mathrm{143}^{\mathrm{0}} \:\left({b}\right)\:\mathrm{5}{N}\:\mathrm{143}^{\mathrm{0}} \:\left({c}\right)\:\mathrm{5}{N}\:\mathrm{127}^{\mathrm{0}} \\ $$$$\left({d}\right)\:\mathrm{7}{N}\:\mathrm{127}^{\mathrm{0}} \\ $$ Answered by Olaf…