Menu Close

Author: Tinku Tara

log-x-y-y-x-

Question Number 5039 by Rasheed Soomro last updated on 05/Apr/16 $$\mathrm{log}_{\left(\frac{\mathrm{x}}{\mathrm{y}}\right)} \left(\frac{\mathrm{y}}{\mathrm{x}}\right)=? \\ $$ Answered by LMTV last updated on 05/Apr/16 $$\left(\frac{{x}}{{y}}\right)^{?} =\frac{{y}}{{x}} \\ $$$$?=−\mathrm{1}…

An-engine-is-pumping-water-from-a-well-25m-deep-It-discharges-0-4-m-3-of-water-each-second-with-a-velocity-of-12-ms-1-Find-the-power-of-the-pump-given-that-the-density-of-water-is-1000-kg-m-

Question Number 136110 by physicstutes last updated on 18/Mar/21 $$\mathrm{An}\:\mathrm{engine}\:\mathrm{is}\:\mathrm{pumping}\:\mathrm{water}\:\mathrm{from}\:\mathrm{a}\:\mathrm{well}\:\mathrm{25m}\:\mathrm{deep}.\:\mathrm{It}\:\mathrm{discharges} \\ $$$$\mathrm{0}.\mathrm{4}\:\mathrm{m}^{\mathrm{3}} \:\mathrm{of}\:\mathrm{water}\:\mathrm{each}\:\mathrm{second}\:\mathrm{with}\:\mathrm{a}\:\mathrm{velocity}\:\mathrm{of}\:\mathrm{12}\:\mathrm{ms}^{−\mathrm{1}} .\:\mathrm{Find}\:\mathrm{the}\: \\ $$$$\mathrm{power}\:\mathrm{of}\:\mathrm{the}\:\mathrm{pump}\:\mathrm{given}\:\mathrm{that}\:\mathrm{the}\:\mathrm{density}\:\mathrm{of}\:\mathrm{water}\:\mathrm{is}\:\mathrm{1000}\:\mathrm{kg}\:\mathrm{m}^{−\mathrm{3}} . \\ $$$$\mathrm{take}\:\boldsymbol{\mathrm{g}}\:=\:\mathrm{10}\:\mathrm{ms}^{−\mathrm{2}} \\ $$ Commented by mr W…

cos-1-43-3-pi-1-2-cos-1-43-3-2pi-2-2-cos-1-43-3-3pi-3-2-api-Find-a-

Question Number 136104 by Dwaipayan Shikari last updated on 18/Mar/21 $$\frac{{cos}\left(\mathrm{1}+\sqrt{\frac{\mathrm{43}}{\mathrm{3}}}\right)\pi}{\mathrm{1}^{\mathrm{2}} }+\frac{{cos}\left(\mathrm{1}+\sqrt{\frac{\mathrm{43}}{\mathrm{3}}}\right)\mathrm{2}\pi}{\mathrm{2}^{\mathrm{2}} }+\frac{{cos}\left(\mathrm{1}+\sqrt{\frac{\mathrm{43}}{\mathrm{3}}}\right)\mathrm{3}\pi}{\mathrm{3}^{\mathrm{2}} }+…={a}\pi \\ $$$${Find}\:{a} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com

Question-70571

Question Number 70571 by ahmadshahhimat775@gmail.com last updated on 05/Oct/19 Commented by mathmax by abdo last updated on 05/Oct/19 $$\left.\exists\:{c}\:\in\right]\mathrm{3},\mathrm{3}+{h}\left[\:/\int_{\mathrm{3}} ^{{h}+\mathrm{3}} \:\frac{\mathrm{5}{dx}}{{x}^{\mathrm{3}} \:+\mathrm{7}}\:=\frac{\mathrm{5}}{{c}^{\mathrm{3}} \:+\mathrm{7}}\:\int_{\mathrm{3}} ^{{h}+\mathrm{3}} {dx}=\frac{\mathrm{5}{h}}{{c}^{\mathrm{3}}…