Question Number 66513 by Rio Michael last updated on 16/Aug/19 $${when}\:{finding}\:\:\int_{\mathrm{0}} ^{\mathrm{2}} \left(\mathrm{2}{x}\:+\mathrm{4}\right)^{\mathrm{5}} {dx}\: \\ $$$${must}\:{we}\:{change}\:{limits}? \\ $$ Commented by kaivan.ahmadi last updated on 17/Aug/19…
Question Number 976 by 123456 last updated on 11/May/15 $$\begin{cases}{\mathrm{tan}\:{x}\:\mathrm{tan}\:\left({y}−{z}\right)={a}}\\{\mathrm{tan}\:{y}\:\mathrm{tan}\:\left({z}−{x}\right)={b}}\\{\mathrm{tan}\:{z}\:\mathrm{tan}\:\left({x}−{y}\right)={c}}\end{cases} \\ $$$$\mathrm{for}\:\mathrm{wich}\:\mathrm{values}\:\mathrm{of}\:{a},{b},{c}\:\mathrm{the}\:\mathrm{system} \\ $$$$\mathrm{have}\:\mathrm{solutions}? \\ $$$$\left({x},{y},{z},{a},{b},{c}\right)\in\mathbb{R}^{\mathrm{6}} \\ $$ Commented by 123456 last updated on 11/May/15…
Question Number 66508 by Masumsiddiqui399@gmail.com last updated on 16/Aug/19 Commented by Prithwish sen last updated on 16/Aug/19 $$\left(\sqrt{\mathrm{7}−\mathrm{4}\sqrt{\mathrm{3}}}\right)^{\mathrm{x}+\sqrt{\mathrm{x}+\mathrm{2}}} =\left(\mathrm{2}−\sqrt{\mathrm{3}}\right)^{\mathrm{x}+^{\mathrm{3}} \sqrt{\mathrm{2x}+\mathrm{4}}} \\ $$$$\because\mathrm{7}−\mathrm{4}\sqrt{\mathrm{3}}\:=\:\left(\mathrm{2}−\sqrt{\mathrm{3}}\right)^{\mathrm{2}} \\ $$$$\therefore\:\mathrm{x}+\sqrt{\mathrm{x}+\mathrm{2}}=\mathrm{x}+^{\mathrm{3}} \sqrt{\mathrm{2x}+\mathrm{1}}\:\:\Rightarrow\mathrm{x}=\mathrm{2}…
Question Number 973 by Yugi last updated on 10/May/15 $${The}\:{number}\:{of}\:{hits}\:{per}\:{minute}\:{on}\:{a}\:{website}\:{is}\:\mathrm{0}.\mathrm{8}.\:{It}\:{is}\:{shown}\:{that}\:{the}\:{time}\:{T} \\ $$$${between}\:{two}\:{successive}\:{hits}\:{follows}\:{a}\:{negative}\:{exponential}\:{distribution}\: \\ $$$${f}\left({t}\right)=\mathrm{0}.\mathrm{8}{e}^{−\mathrm{0}.\mathrm{8}{t}} \:\left(\:{t}\:\geqslant\:\mathrm{0}\:\right).\:{It}\:{is}\:{required}\:{to}\:{determine}\:{the}\:{probability}\:{that}\:{the}\:{time}\: \\ $$$${between}\:{the}\:\mathrm{1}{st}\:{hit}\:{and}\:{the}\:\mathrm{51}{st}\:{exceeds}\:{one}\:{hour}.\:{One}\:{approach}\:{to}\:{the}\: \\ $$$${calculation}\:{stated}\:{that}\:{the}\:{required}\:{probability}\:{is}\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{P}\left({no}.\:{of}\:{hits}\:{in}\:\mathrm{60}\:{mins}\:<\:\mathrm{50}\right)\:\:\:\:\:\:\:\:\:\:\:\left(\:\ast\:\right) \\ $$$${Can}\:{anyone}\:{explain}\:{to}\:{me}\:{why}\:{it}\:{is}\:{that} \\ $$$${P}\left({time}\:{between}\:\mathrm{1}{st}\:{hit}\:{and}\:\mathrm{51}{st}\:{hit}\:>\:\mathrm{60}{mins}\right)=\:\left(\ast\right)\:?…
Question Number 972 by tera last updated on 09/May/15 $$\boldsymbol{{bisa}}\:\boldsymbol{{bahasa}}\:\boldsymbol{{indonesia}}? \\ $$ Commented by 123456 last updated on 10/May/15 $${allahu}\:{akbar} \\ $$ Terms of Service…
Question Number 970 by 123456 last updated on 09/May/15 $${m}\frac{{d}\boldsymbol{{v}}}{{dt}}={q}\left(\boldsymbol{{v}}×\boldsymbol{{B}}+\boldsymbol{{E}}\right)+\boldsymbol{{f}} \\ $$$$\boldsymbol{{v}}\left(\mathrm{0}\right)=\boldsymbol{{v}}_{\mathrm{0}} \\ $$$$\boldsymbol{{v}}\left({t}\right)=? \\ $$$$\boldsymbol{{v}}=\frac{{d}\boldsymbol{{r}}}{{dt}} \\ $$$$\boldsymbol{{r}}\left(\mathrm{0}\right)=\mathrm{0} \\ $$$$\boldsymbol{{r}}\left({t}\right)=?? \\ $$ Terms of Service…
Question Number 66502 by mhmd last updated on 16/Aug/19 $${find}\:{the}\:{area}\:{about}\:{cos}\left(\mathrm{2}\theta\right) \\ $$ Answered by mr W last updated on 16/Aug/19 $${A}=\mathrm{8}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \frac{{r}^{\mathrm{2}} {d}\theta}{\mathrm{2}} \\…
Question Number 966 by rpatle69@gmail.com last updated on 09/May/15 $$\int{e}^{−{x}} \:{dx}=?\:{please}\:{answer}\:{me}\:{soon}\:{guys} \\ $$$$ \\ $$$$ \\ $$ Answered by prakash jain last updated on 09/May/15…
Question Number 66498 by miracle wokama last updated on 16/Aug/19 Commented by MJS last updated on 16/Aug/19 $$\mathrm{too}\:\mathrm{complicated} \\ $$$$\mathrm{it}'\mathrm{s}\:\mathrm{easy}\:\mathrm{to}\:\mathrm{see}\:\mathrm{that}\:{f}'\left(\mathrm{0}\right)=\mathrm{1}\:\mathrm{and}\:{f}'\left(\mathrm{1}\right)=\mathrm{100} \\ $$ Commented by mathmax…
Question Number 132032 by mohammad17 last updated on 10/Feb/21 $${we}\:{say}\:{that}\:{Log}\left({z}_{\mathrm{1}} {z}_{\mathrm{2}} \right)={Log}\left({z}_{\mathrm{1}} \right)+{Log}\left({z}_{\mathrm{2}} \right) \\ $$$${when}:\:{Re}\left({z}_{\mathrm{1}} \right)\leqslant\mathrm{0}\:{and}\:{Re}\left({z}_{\mathrm{2}} \right)\leqslant\mathrm{0} \\ $$$${prove}\:{this}\:? \\ $$ Commented by mohammad17…