Question Number 136005 by Raxreedoroid last updated on 17/Mar/21 $$\mathrm{challenge}\:\mathrm{question} \\ $$$$ \\ $$$$\mathrm{Let}\:{R}\left({m},{n}\right)={R}\left({m},{n}−\mathrm{1}\right)+{R}\left({m}+\mathrm{1},{n}−\mathrm{1}\right) \\ $$$$\mathrm{if}\:{R}\left(\mathrm{1},\mathrm{1}\right)=\mathrm{19},{R}\left(\mathrm{2},\mathrm{1}\right)=\mathrm{9},{R}\left(\mathrm{3},\mathrm{1}\right)=−\mathrm{2} \\ $$$$\mathrm{and}\:\forall{n}\:\mathrm{s}.\mathrm{t}.\:{R}\left(\mathrm{4},{n}\right)=\mathrm{0} \\ $$$$ \\ $$$$ \\ $$$$\left.{a}\right)\:\mathrm{Find}\:{R}\left(\mathrm{1},\mathrm{33}\right) \\…
Question Number 136006 by liberty last updated on 17/Mar/21 $$ \\ $$What are the dimensions of the rectangle of maximum area that can be inscribed…
Question Number 136000 by physicstutes last updated on 17/Mar/21 $$\mathrm{A}\:\mathrm{room}\:\mathrm{has}\:\mathrm{5}\:\mathrm{doors},\:\mathrm{if}\:\mathrm{a}\:\mathrm{person}\:\mathrm{enters}\:\mathrm{through}\:\mathrm{a}\:\mathrm{dooor}, \\ $$$$\mathrm{that}\:\mathrm{person}\:\mathrm{cannot}\:\mathrm{leave}\:\mathrm{through}\:\mathrm{that}\:\mathrm{same}\:\mathrm{door}.\:\mathrm{Find}\:\mathrm{the}\:\mathrm{number}\: \\ $$$$\mathrm{of}\:\mathrm{ways}\:\mathrm{that}\:\mathrm{person}\:\mathrm{can}\:\mathrm{enter}\:\mathrm{and}\:\mathrm{leave}\:\mathrm{that}\:\mathrm{room}. \\ $$ Answered by liberty last updated on 17/Mar/21 $$\mathrm{5}×\mathrm{4}=\mathrm{20} \\…
Question Number 136003 by physicstutes last updated on 17/Mar/21 $$\mathrm{let}'\mathrm{s}\:\mathrm{define}\:\mathrm{a}\:\mathrm{relation}\:\boldsymbol{{R}}\:\mathrm{such}\:\mathrm{that} \\ $$$$\:\:_{{a}} {R}_{{b}} \:\Leftrightarrow\:{a}\:\leqslant\:{b} \\ $$$$\mathrm{is}\:\mathrm{this}\:\mathrm{relation}\:\mathrm{reflexive},\:\mathrm{symmetic}\:\mathrm{and}\:\mathrm{transitive}?\:\left(\mathrm{equivalence}\:\mathrm{relation}\right) \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 136002 by physicstutes last updated on 17/Mar/21 $$\mathrm{A}\:\mathrm{man}\:\mathrm{has}\:\mathrm{a}\:\mathrm{set}\:\mathrm{of}\:\mathrm{5}\:\mathrm{balls},\:\mathrm{in}\:\mathrm{which}\:\mathrm{3}\:\mathrm{are}\:\mathrm{red}\:\mathrm{and}\:\mathrm{2}\:\mathrm{are}\:\mathrm{blue} \\ $$$$\mathrm{what}\:\mathrm{are}\:\mathrm{the}\:\mathrm{number}\:\mathrm{of}\:\mathrm{ways}\:\mathrm{these}\:\mathrm{5}\:\mathrm{balls}\:\mathrm{can}\:\mathrm{be}\:\mathrm{arranged}\:\mathrm{in}\:\mathrm{a}\: \\ $$$$\mathrm{line}. \\ $$ Answered by liberty last updated on 17/Mar/21 $$\frac{\mathrm{5}!}{\mathrm{2}!.\mathrm{3}!} \\…
Question Number 135996 by mnjuly1970 last updated on 17/Mar/21 Answered by Dwaipayan Shikari last updated on 17/Mar/21 $$\int_{\mathrm{0}} ^{\mathrm{1}} \underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{x}^{{n}+\mathrm{1}} }{{n}^{\mathrm{2}} }{dx} \\…
Question Number 70460 by abdusalamyussif@gmail.com last updated on 04/Oct/19 Commented by Tinku Tara last updated on 04/Oct/19 $$\mathrm{can}\:\mathrm{you}\:\mathrm{please}\:\mathrm{use}\:\mathrm{app}\:\mathrm{like}\:\mathrm{camscanner} \\ $$$$\mathrm{to}\:\mathrm{take}\:\mathrm{pictures}. \\ $$ Commented by abdusalamyussif@gmail.com…
Question Number 4925 by sanusihammed last updated on 22/Mar/16 $${If}\:{y}\:=\:\left({secx}\:+\:{tanx}\right)^{{p}} \:.\:{where}\:{p}\:{is}\:{a}\:{constant}\: \\ $$$${prove}\:{that}\:\:\:\:{cosx}\:{dy}/{dx}\:−\:{py}\:=\:\mathrm{0} \\ $$$$ \\ $$ Answered by prakash jain last updated on 22/Mar/16…
Question Number 135998 by nadovic last updated on 17/Mar/21 A bowl contains carefully shredded confetti, 6 of which are blue and the remaining 12 are red.…
Question Number 4922 by 123456 last updated on 22/Mar/16 $$\begin{cases}{{x}\left(\rho,\theta,\psi\right)=\rho\:\mathrm{cos}\:\theta+\psi\:\mathrm{sin}\:\theta}\\{{y}\left(\rho,\theta,\psi\right)=\rho\:\mathrm{sin}\:\theta+\psi\:\mathrm{cos}\:\theta}\\{{z}\left(\rho,\theta,\psi\right)=\psi\:\mathrm{sin}\:\theta}\end{cases} \\ $$$$\boldsymbol{{r}}\left(\rho,\theta,\psi\right)={x}\left(\rho,\theta,\psi\right)\:\boldsymbol{{e}}_{{x}} +{y}\left(\rho,\theta,\psi\right)\:\boldsymbol{{e}}_{{y}} +{z}\left(\rho,\theta,\psi\right)\:\boldsymbol{{e}}_{{z}} \\ $$$$\frac{\partial\boldsymbol{{r}}}{\partial\rho}=? \\ $$$$\frac{\partial\boldsymbol{{r}}}{\partial\theta}=? \\ $$$$\frac{\partial\boldsymbol{{r}}}{\partial\psi}=? \\ $$ Commented by prakash…