Menu Close

Author: Tinku Tara

Solve-the-following-d-e-by-using-v-dy-dx-where-v-is-a-function-of-x-x-2-d-2-y-dx-2-2-dy-dx-x-0-

Question Number 823 by 112358 last updated on 18/Mar/15 $${Solve}\:{the}\:{following}\:{d}.{e}\:{by}\:{using} \\ $$$${v}=\frac{{dy}}{{dx}},\:{where}\:{v}\:{is}\:{a}\:{function}\:{of}\:{x}. \\ $$$${x}^{\mathrm{2}} \frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }−\mathrm{2}\frac{{dy}}{{dx}}+{x}=\mathrm{0} \\ $$ Answered by 123456 last updated on…

Question-66356

Question Number 66356 by sandeepkeshari0797@gmail.com last updated on 13/Aug/19 Answered by $@ty@m123 last updated on 13/Aug/19 $${Let}\:{the}\:{number}=\mathrm{10}{x}+{y} \\ $$$${ATQ}, \\ $$$$\mathrm{9}\left(\mathrm{10}{x}+{y}\right)=\mathrm{2}\left(\mathrm{10}{y}+{x}\right) \\ $$$$\mathrm{90}{x}+\mathrm{9}{y}=\mathrm{20}{y}+\mathrm{2}{x} \\ $$$$\mathrm{88}{x}=\mathrm{11}{y}…

If-2x-y-8-and-x-y-3-2-log-10-2-log-8-36-then-x-2-3y-a-28-b-22-c-20-d-16-e-12-

Question Number 66354 by gunawan last updated on 13/Aug/19 $$\mathrm{If}\:\:\mathrm{2}{x}+{y}=\mathrm{8}\:\mathrm{and} \\ $$$$\left({x}+{y}\right)=\frac{\mathrm{3}}{\mathrm{2}}\mathrm{log}_{\mathrm{10}} \:\mathrm{2}.\mathrm{log}_{\mathrm{8}} \mathrm{36} \\ $$$$\mathrm{then}\:\mathrm{x}^{\mathrm{2}} +\mathrm{3y}=… \\ $$$$\mathrm{a}.\:\mathrm{28} \\ $$$$\mathrm{b}.\:\mathrm{22} \\ $$$$\mathrm{c}.\:\mathrm{20} \\ $$$$\mathrm{d}.\:\mathrm{16}…

Value-of-x-satiesfied-y-log-4-x-2-1-4x-2-2x-1-negative-value-is-a-1-lt-x-lt-2-b-2-lt-x-lt-1-c-2-lt-x-lt-2-d-2-lt-x-lt-1-e-x-lt-2-

Question Number 66355 by gunawan last updated on 13/Aug/19 $${V}\mathrm{alue}\:\mathrm{of}\:{x}\:\mathrm{satiesfied}\:{y}=\frac{\mathrm{log}_{\mathrm{4}} \left({x}^{\mathrm{2}} −\mathrm{1}\right)}{\mathrm{4}{x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{1}} \\ $$$${negative}\:{value}\:\mathrm{is}… \\ $$$$\mathrm{a}.\:−\mathrm{1}<{x}<\sqrt{\mathrm{2}} \\ $$$${b}.\:−\sqrt{\mathrm{2}}<{x}<\mathrm{1} \\ $$$${c}.\:−\sqrt{\mathrm{2}}<{x}<\sqrt{\mathrm{2}} \\ $$$${d}.\:−\sqrt{\mathrm{2}}<{x}<−\mathrm{1} \\ $$$${e}.\:{x}<−\mathrm{2}…

f-R-R-g-R-R-f-xy-f-x-g-x-f-y-g-y-g-xy-f-x-g-y-f-y-g-x-d-fg-dx-

Question Number 818 by 123456 last updated on 17/Mar/15 $${f}:\mathbb{R}\rightarrow\mathbb{R} \\ $$$${g}:\mathbb{R}\rightarrow\mathbb{R} \\ $$$${f}\left({xy}\right)={f}\left({x}\right){g}\left({x}\right)+{f}\left({y}\right){g}\left({y}\right) \\ $$$${g}\left({xy}\right)={f}\left({x}\right){g}\left({y}\right)+{f}\left({y}\right){g}\left({x}\right) \\ $$$$\frac{{d}\left({fg}\right)}{{dx}}=? \\ $$ Commented by prakash jain last…