Question Number 131890 by Study last updated on 09/Feb/21 $${log}_{\mathrm{2}} {x}+{log}_{\mathrm{3}} {x}=\mathrm{1}\:\:\:\:\:{x}=? \\ $$ Answered by Raxreedoroid last updated on 09/Feb/21 $$\frac{{log}_{\mathrm{3}} {x}}{{log}_{\mathrm{3}} \mathrm{2}}+{log}_{\mathrm{3}} {x}=\mathrm{1}…
Question Number 131885 by Study last updated on 09/Feb/21 $${lim}_{{n}\rightarrow−\infty} \frac{\mathrm{2}^{{n}} +\mathrm{4}^{{n}−\mathrm{3}} }{\mathrm{2}^{{n}−\mathrm{3}} +\mathrm{4}{n}}=? \\ $$ Commented by malwan last updated on 09/Feb/21 $$\underset{{n}\rightarrow−\infty} {{lim}}\:\frac{\mathrm{2}^{{n}}…
Question Number 66350 by mathmax by abdo last updated on 12/Aug/19 $${study}\:{the}\:{convergence}\:{of}\:\:\int_{\mathrm{0}} ^{\infty} \:\left(\mathrm{1}−\sqrt{\frac{{x}^{{n}} }{\mathrm{2}+{x}^{{n}} }}\right){dx}\:\:\:\:{n}\in{N} \\ $$ Commented by mathmax by abdo last updated…
Question Number 131884 by Study last updated on 09/Feb/21 $${log}_{\mathrm{2}} {x}+{log}_{\mathrm{3}} {x}=\mathrm{1}\:\:\:\:\:\:\:{x}=? \\ $$ Answered by EDWIN88 last updated on 09/Feb/21 $$\:\frac{\mathrm{ln}\:\mathrm{x}}{\mathrm{ln}\:\mathrm{2}}\:+\:\frac{\mathrm{ln}\:\mathrm{x}}{\mathrm{ln}\:\mathrm{3}}\:=\:\mathrm{1}\: \\ $$$$\:\mathrm{ln}\:\mathrm{x}\:\left(\frac{\mathrm{1}}{\mathrm{ln}\:\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{ln}\:\mathrm{3}}\right)=\mathrm{1} \\…
Question Number 66351 by mathmax by abdo last updated on 12/Aug/19 $${let}\:{I}_{{n}} =\int_{\mathrm{0}} ^{\infty} \:\:\frac{{e}^{{nt}} }{\left(\mathrm{1}+{e}^{{t}} \right)^{{n}+\mathrm{1}} }{dt}\:\:\:\:\:\left({n}\:{from}\:{N}^{\bigstar} \right) \\ $$$$\left.\right){prove}\:{the}\:{existence}\:{of}\:{I}_{{n}} \\ $$$$\left.\mathrm{2}\right){find}\:{lim}_{{n}\rightarrow+\infty} \:\:\:{I}_{{n}} \\…
Question Number 131887 by Algoritm last updated on 09/Feb/21 Answered by SEKRET last updated on 09/Feb/21 $$\:\boldsymbol{\mathrm{Leybnist}}\:\:\:\boldsymbol{\mathrm{formula}} \\ $$$$\:\:\boldsymbol{\mathrm{u}}=\:\boldsymbol{\mathrm{e}}^{−\mathrm{2}\boldsymbol{\mathrm{x}}} \:\:\:\:\:\:\:\:\:\boldsymbol{\mathrm{u}}^{\boldsymbol{\mathrm{n}}} =\left(−\mathrm{2}\right)^{\boldsymbol{\mathrm{n}}} \centerdot\boldsymbol{\mathrm{e}}^{−\mathrm{2}\boldsymbol{\mathrm{x}}} \\ $$$$\:\boldsymbol{\mathrm{v}}=\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}−\boldsymbol{\mathrm{x}}}}\:\:\:\:\:\:\boldsymbol{\mathrm{v}}^{\boldsymbol{\mathrm{n}}} =\frac{\left(\mathrm{2}\boldsymbol{\mathrm{n}}−\mathrm{1}\right)!!}{\mathrm{2}^{\boldsymbol{\mathrm{n}}}…
Question Number 66348 by mathmax by abdo last updated on 12/Aug/19 $${find}\:{nature}\:{of}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{dx}}{{e}^{{x}} −{cosx}} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 66349 by mathmax by abdo last updated on 12/Aug/19 $${study}\:{the}\:{convergence}\:{of}\:\int_{\mathrm{1}} ^{+\infty} \:\:\frac{{arctan}\left({x}−\mathrm{1}\right)}{\left({x}^{\mathrm{2}} −\mathrm{1}\right)^{\frac{\mathrm{4}}{\mathrm{3}}} }{dx} \\ $$ Commented by mathmax by abdo last updated…
Question Number 66346 by mathmax by abdo last updated on 12/Aug/19 $${find}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{t}^{\mathrm{7}} }{{t}^{\mathrm{16}} \:+\mathrm{1}}{dt} \\ $$ Commented by mathmax by abdo last updated…
Question Number 131880 by Algoritm last updated on 09/Feb/21 Answered by SEKRET last updated on 09/Feb/21 $$\:\boldsymbol{\mathrm{x}}=\frac{\mathrm{5}}{\mathrm{2}} \\ $$ Commented by Algoritm last updated on…