Menu Close

Author: Tinku Tara

0-1-1-x-x-2-x-3-dx-

Question Number 66740 by behi83417@gmail.com last updated on 19/Aug/19 $$\underset{\:\:\mathrm{0}} {\overset{\:\:\:\:\:\:\:\mathrm{1}} {\int}}\sqrt{\mathrm{1}−\boldsymbol{\mathrm{x}}+\boldsymbol{\mathrm{x}}^{\mathrm{2}} −\boldsymbol{\mathrm{x}}^{\mathrm{3}} \:}\:\:\boldsymbol{\mathrm{dx}}=? \\ $$ Commented by mathmax by abdo last updated on 21/Aug/19…

lim-x-0-cosx-sinx-

Question Number 1200 by sumitkumar4799@gmail.com last updated on 14/Jul/15 $$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\:\left[\mathrm{cos}{x}.\mathrm{sin}{x}\right] \\ $$ Answered by prakash jain last updated on 14/Jul/15 $$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\left[\frac{\mathrm{1}}{\mathrm{2}}\mathrm{sin}\:\mathrm{2}{x}\right]=\mathrm{0} \\ $$…

lets-f-R-Z-suppose-that-x-R-and-y-R-with-x-y-such-f-x-f-y-can-f-x-be-conrinuous-

Question Number 1196 by 123456 last updated on 13/Jul/15 $$\mathrm{lets}\:{f}:\mathbb{R}\rightarrow\mathbb{Z},\:\mathrm{suppose}\:\mathrm{that}\:\exists{x}\in\mathbb{R}\:\mathrm{and} \\ $$$$\exists{y}\in\mathbb{R}\:\mathrm{with}\:{x}\neq{y}\:\mathrm{such}\:{f}\left({x}\right)\neq{f}\left({y}\right) \\ $$$$\mathrm{can}\:{f}\left({x}\right)\:\mathrm{be}\:\mathrm{conrinuous}? \\ $$ Answered by prakash jain last updated on 14/Jul/15 $${f}\left({x}\right)={a}\in\mathbb{Z}…

Question-132265

Question Number 132265 by Salman_Abir last updated on 12/Feb/21 Answered by physicstutes last updated on 12/Feb/21 $$\mathrm{m}\:=\:\mathrm{4}\:\mathrm{kg},\:{k}\:=\:\mathrm{100}\:\mathrm{Nm}^{−\mathrm{1}} \\ $$$$\:{T}\:=\:\mathrm{2}\pi\sqrt{\frac{{m}}{{k}}}\:=\:\mathrm{2}\pi\sqrt{\frac{\mathrm{4}}{\mathrm{100}}}\: \\ $$$$\Rightarrow\:{T}\:=\:\frac{\mathrm{4}\pi}{\mathrm{25}}\:\mathrm{s} \\ $$$${f}\:=\:\frac{\mathrm{1}}{{T}}\:=\:\frac{\mathrm{25}}{\mathrm{4}\pi}\:\mathrm{Hz} \\ $$$${T}\:=\:\frac{\mathrm{2}\pi}{\omega}\:\Rightarrow\:\omega\:=\:\frac{\mathrm{2}\pi}{{T}}\:\:=\:\mathrm{2}\pi\:.\:\frac{\mathrm{25}}{\mathrm{4}\pi}\:=\:\frac{\mathrm{25}}{\mathrm{2}}\:\mathrm{rad}/\mathrm{s}…

Question-132264

Question Number 132264 by Salman_Abir last updated on 12/Feb/21 Answered by physicstutes last updated on 12/Feb/21 $$\mathrm{frequency}\:=\:\mathrm{5}\:\mathrm{Hz} \\ $$$$\:\:\omega\:=\:\mathrm{2}\pi{f} \\ $$$$\Rightarrow\:\omega\:=\:\frac{\mathrm{2}\pi}{\mathrm{5}}\:\mathrm{rad}/\mathrm{s} \\ $$$$\:\mathrm{T}\:=\:\frac{\mathrm{1}}{\mathrm{5}}\:\mathrm{s} \\ $$…