Menu Close

Author: Tinku Tara

let-A-n-0-1-x-n-1-x-dx-1-calculate-A-0-and-A-1-2-prove-that-n-N-3-2n-A-n-2nA-n-1-3-find-A-n-interms-of-n-

Question Number 66332 by mathmax by abdo last updated on 12/Aug/19 $${let}\:{A}_{{n}} =\int_{\mathrm{0}} ^{\mathrm{1}} \:{x}^{{n}} \sqrt{\mathrm{1}−{x}}{dx} \\ $$$$\left.\mathrm{1}\right){calculate}\:{A}_{\mathrm{0}} \:{and}\:{A}_{\mathrm{1}} \\ $$$$\left.\mathrm{2}\right){prove}\:{that}\:\forall{n}\in{N}^{\bigstar} \:\:\:\:\left(\mathrm{3}+\mathrm{2}{n}\right){A}_{{n}} =\mathrm{2}{nA}_{{n}−\mathrm{1}} \\ $$$$\left.\mathrm{3}\right)\:{find}\:{A}_{{n}}…

let-I-n-0-1-x-n-e-x-dx-with-n-integr-natural-1-calculate-I-0-I-1-and-I-2-2-find-arelation-between-I-n-and-I-n-3-find-I-n-interms-of-n-

Question Number 66330 by mathmax by abdo last updated on 12/Aug/19 $${let}\:{I}_{{n}} =\int_{\mathrm{0}} ^{\mathrm{1}} \:{x}^{{n}} \:{e}^{−{x}} \:{dx}\:\:\:\:{with}\:{n}\:{integr}\:{natural} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{I}_{\mathrm{0}} \:,\:{I}_{\mathrm{1}} \:{and}\:{I}_{\mathrm{2}} \\ $$$$\left.\mathrm{2}\right){find}\:{arelation}\:{between}\:{I}_{{n}} \:{and}\:{I}_{{n}} \\…

what-is-the-magnitude-and-direction-in-degree-of-this-vector-F-3-10-6-i-13-35-10-6-j-a-282-5-0-b-78-5-0-c-82-5-0-d-78-5-0-e-282-5-0-

Question Number 131860 by aurpeyz last updated on 09/Feb/21 $${what}\:{is}\:{the}\:{magnitude}\:{and}\:\: \\ $$$${direction}\left({in}\:{degree}\right)\:{of}\:{this}\:{vector}? \\ $$$${F}=−\mathrm{3}×\mathrm{10}^{−\mathrm{6}} {i}−\mathrm{13}.\mathrm{35}×\mathrm{10}^{−\mathrm{6}} {j} \\ $$$$\left({a}\right)\:\mathrm{282}.\mathrm{5}^{\mathrm{0}} \:\left({b}\right)\mathrm{78}.\mathrm{5}^{\mathrm{0}} \:\left({c}\right)\:\mathrm{82}.\mathrm{5}^{\mathrm{0}} \:\left({d}\right)\mathrm{78}.\mathrm{5}^{\mathrm{0}} \\ $$$$\left({e}\right)\mathrm{282}.\mathrm{5}^{\mathrm{0}} \\ $$…

0-1-x-x-2-x-x-2-x-2-y-2-dydx-B-x-2-y-2-dxdy-B-x-y-R-2-y-x-x-2-x-2-y-2-x-0-B-2-d-d-B-

Question Number 789 by 123456 last updated on 14/Mar/15 $$\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\underset{{x}−{x}^{\mathrm{2}} } {\overset{\sqrt{{x}−{x}^{\mathrm{2}} }} {\int}}\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }{dydx}=? \\ $$$$\int\underset{\mathrm{B}} {\int}\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }{dxdy}\:\:\:\:\:\mathrm{B}=\left\{\left({x},{y}\right)\in\mathbb{R}^{\mathrm{2}} :{y}\geqslant{x}−{x}^{\mathrm{2}} \wedge{x}^{\mathrm{2}}…