Question Number 66316 by mathmax by abdo last updated on 12/Aug/19 $${lim}_{{x}\rightarrow\frac{\pi}{\mathrm{2}}} \:\:\:\frac{{ln}\left({sin}^{\mathrm{2}} {x}\right)}{\left(\frac{\pi}{\mathrm{2}}−{x}\right)^{\mathrm{2}} } \\ $$$$ \\ $$ Commented by mathmax by abdo last…
Question Number 66317 by mathmax by abdo last updated on 12/Aug/19 $${calculate}\:{lim}_{{x}\rightarrow\mathrm{0}} \:\frac{{ln}\left({cosx}\right)}{\mathrm{1}−{cos}\left(\mathrm{2}{x}\right)} \\ $$ Commented by kaivan.ahmadi last updated on 12/Aug/19 $$\equiv{lim}_{{x}\rightarrow\mathrm{0}} \frac{{ln}\left({cosx}\right)}{\mathrm{2}{x}^{\mathrm{2}} }\overset{{hop}}…
Question Number 131849 by mnjuly1970 last updated on 09/Feb/21 $$\:\:\:\:\:\:\:\:\:\:\:\:\:\ast\ast\ast\:\:\:{calculus}\:\left({I}\right)\:\ast\ast\ast \\ $$$$\:\:\:{please}\:\:{evaluate}:: \\ $$$$\:\:\:\:\:\:\:\:\phi=\int\frac{{dx}}{{sin}\left(\mathrm{2}{x}\right){ln}\left({tan}\left({x}\right)\right)} \\ $$$$\:\:\:\:\:\:{Trinity}\:{College} \\ $$$$\:\:\:\:\:\:\:{Cambridge}\:….\mathrm{1897}… \\ $$ Answered by mindispower last updated…
Question Number 776 by 123456 last updated on 12/Mar/15 $$\frac{\partial^{\mathrm{2}} {u}}{\partial{x}^{\mathrm{2}} }={v}_{\mathrm{1}} \frac{\partial^{\mathrm{2}} {u}}{\partial{x}\partial{t}}+{v}_{\mathrm{2}} ^{\mathrm{2}} \frac{\partial^{\mathrm{2}} {u}}{\partial{t}^{\mathrm{2}} } \\ $$$${u}\left({x},\mathrm{0}\right)={f}\left({x}\right) \\ $$$${u}_{{t}} \left({x},\mathrm{0}\right)={g}\left({x}\right) \\ $$…
Question Number 66310 by mr W last updated on 12/Aug/19 Commented by mr W last updated on 12/Aug/19 $${all}\:{contact}\:{is}\:{frictionless}. \\ $$$${find}\:{the}\:{minimum}\:{length}\:{of}\:{uniform} \\ $$$${rope}\:{such}\:{that}\:{it}\:{can}\:{stay}\:{in}\:{equilibrium} \\ $$$${as}\:{shown}.…
Question Number 131847 by pticantor last updated on 09/Feb/21 $$\:\boldsymbol{{Let}}\:\left(\boldsymbol{\Omega},\digamma,\boldsymbol{{P}}\right)\:\boldsymbol{{be}}\:\boldsymbol{{a}}\:\boldsymbol{{probalistics}}\:\boldsymbol{{space}}\: \\ $$$$\boldsymbol{{show}}\:\boldsymbol{{that}},\: \\ $$$$\boldsymbol{{A}},\boldsymbol{{B}}\in\digamma \\ $$$$\boldsymbol{{if}}\:\left(\boldsymbol{{P}}\left(\boldsymbol{{A}}\mid\boldsymbol{{B}}\right)\leqslant{P}\left(\boldsymbol{{A}}\right)\:\boldsymbol{{and}}\:\boldsymbol{{P}}\left(\boldsymbol{{B}}\mid\boldsymbol{{A}}\right)\ll\boldsymbol{{P}}\left({B}\right)\right) \\ $$$${t}\boldsymbol{{h}}{en}\:\boldsymbol{{P}}\left({A}\mid\overset{\_} {\boldsymbol{{B}}}\right)\geqslant\boldsymbol{{P}}\left(\boldsymbol{{A}}\right) \\ $$$$ \\ $$ Answered by…
Question Number 66308 by mathmax by abdo last updated on 12/Aug/19 $${find}\:\int\:\:\:\frac{{dx}}{\left({x}+\mathrm{3}\right)\sqrt{−{x}^{\mathrm{2}} −\mathrm{4}{x}}} \\ $$ Commented by prof Abdo imad last updated on 16/Aug/19 $${let}\:{A}\:=\int\:\frac{{dx}}{\left({x}+\mathrm{3}\right)\sqrt{−{x}^{\mathrm{2}}…
Question Number 66309 by mathmax by abdo last updated on 12/Aug/19 $${calculate}\:\:\int\:\:\:\:\:\:\frac{{dx}}{\left({x}^{\mathrm{2}} −\mathrm{1}\right)\sqrt{{x}^{\mathrm{2}} +\mathrm{2}}} \\ $$ Commented by prof Abdo imad last updated on 15/Aug/19…
Question Number 772 by malwaan last updated on 12/Mar/15 $${prove}\:{that}\: \\ $$$$\mathrm{5555}^{\mathrm{2222}} +\mathrm{2222}^{\mathrm{5555}} \: \\ $$$${is}\:{divisible}\:{by}\:\mathrm{7} \\ $$ Commented by 123456 last updated on 10/Mar/15…
Question Number 66304 by mathmax by abdo last updated on 12/Aug/19 $${calculate}\:{lim}_{{x}\rightarrow\mathrm{0}} \:\:\:\frac{{ln}\left({x}+\mathrm{1}+{sin}\left(\pi{x}\right)\right)}{{xsin}\left(\mathrm{2}{x}\right)} \\ $$ Answered by kaivan.ahmadi last updated on 12/Aug/19 $$\equiv{lim}_{{x}\rightarrow\mathrm{0}} \frac{{ln}\left({x}+\mathrm{1}+\pi{x}\right)}{\mathrm{2}{x}^{\mathrm{2}} }\:\overset{{hop}}…