Question Number 132211 by benjo_mathlover last updated on 12/Feb/21 $$ \\ $$$$\mathrm{how}\:\mathrm{fast}\:\mathrm{is}\:\mathrm{the}\:\mathrm{area}\:\mathrm{of}\:\mathrm{a}\: \\ $$$$\mathrm{rectangle}\:\mathrm{changing}\:\mathrm{if}\:\mathrm{one}\:\mathrm{side}\:\mathrm{is}\:\mathrm{10} \\ $$$$\:\mathrm{cm}\:\mathrm{long}\:\mathrm{and}\:\mathrm{increasing}\:\mathrm{at}\:\mathrm{a} \\ $$$$\mathrm{rate}\:\mathrm{of}\:\mathrm{2}\:\mathrm{cm}/\mathrm{s}\:\mathrm{and}\:\mathrm{the}\:\mathrm{other}\:\mathrm{side}\:\mathrm{is}\: \\ $$$$\mathrm{8}\:\mathrm{cm}\:\mathrm{long}\:\mathrm{and}\:\mathrm{is}\:\mathrm{decreasing}\:\mathrm{at}\: \\ $$$$\mathrm{a}\:\mathrm{rate}\:\mathrm{of}\:\mathrm{3}\:\mathrm{cm}/\mathrm{s} \\ $$ Answered…
Question Number 132205 by Arijit last updated on 12/Feb/21 Commented by Arijit last updated on 12/Feb/21 $$\boldsymbol{\mathrm{Please}}\:\boldsymbol{\mathrm{Help}}\:\boldsymbol{\mathrm{me}}\:\boldsymbol{\mathrm{to}}\:\boldsymbol{\mathrm{solve}}\:\boldsymbol{\mathrm{this}}….. \\ $$ Answered by mathmax by abdo last…
Question Number 66670 by naka3546 last updated on 18/Aug/19 Commented by mathmax by abdo last updated on 18/Aug/19 $${let}\:{S}\:=\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{\mathrm{3}^{{n}} }{\mathrm{5}^{{n}} \left({n}^{\mathrm{2}} \:+\mathrm{3}{n}+\mathrm{2}\right)}\:\Rightarrow{S}\:=\sum_{{n}=\mathrm{0}} ^{\infty}…
Question Number 1134 by 314159 last updated on 28/Jun/15 $${Find}\:{the}\:{infinite}\:{product}\:{of}\: \\ $$$$\frac{\mathrm{3}}{\mathrm{2}}×\frac{\mathrm{5}}{\mathrm{4}}×\frac{\mathrm{17}}{\mathrm{16}}×\frac{\mathrm{257}}{\mathrm{256}}×\frac{\mathrm{65537}}{\mathrm{65536}}×… \\ $$ Answered by prakash jain last updated on 29/Jun/15 $$\frac{\mathrm{2}^{\mathrm{2}} −\mathrm{1}}{\mathrm{2}}×\frac{\mathrm{2}^{\mathrm{2}} +\mathrm{1}}{\mathrm{2}^{\mathrm{2}}…
Question Number 1133 by 112358 last updated on 29/Jun/15 $${Let}\:{f}\::\:\left[\:\mathrm{0}\:,\:\mathrm{1}\:\right]\:\rightarrow\:\mathbb{R}\:\:{be}\:{a}\: \\ $$$${differentiable}\:{function}.\:{Prove} \\ $$$${that}\:{there}\:{exists}\:{a}\:{c}\:\in\:\left[\mathrm{0},\mathrm{1}\right]\:{such} \\ $$$${that}\: \\ $$$$\frac{\mathrm{4}}{\pi}\left[{f}\left(\mathrm{1}\right)−{f}\left(\mathrm{0}\right)\right]=\left(\mathrm{1}+{c}^{\mathrm{2}} \right){f}^{\:} '\left({c}\right).\: \\ $$ Commented by 123456…
Question Number 132206 by muneer0o0 last updated on 12/Feb/21 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 1132 by 123456 last updated on 24/Jun/15 $$\mathrm{let}\:\mathrm{S}=\left\{\mathrm{1},\mathrm{2},\mathrm{3},\mathrm{4},\mathrm{5}\right\},\:\mathrm{if}\:\mathrm{A},\mathrm{B},\mathrm{C}\:\mathrm{is}\:\mathrm{such}\:\mathrm{that} \\ $$$$\mathrm{A}\cap\mathrm{B}\cap\mathrm{C}=\varnothing \\ $$$$\mathrm{A}\cap\mathrm{B}\neq\varnothing \\ $$$$\mathrm{A}\cap\mathrm{C}\neq\varnothing \\ $$$$\mathrm{how}\:\mathrm{many}\:\mathrm{ways}\:\mathrm{can}\:\mathrm{be}\:\mathrm{choose}\:\mathrm{A},\mathrm{B}\:\mathrm{and} \\ $$$$\mathrm{C} \\ $$ Commented by Faaiz…
Question Number 132201 by SOMEDAVONG last updated on 12/Feb/21 $$\mathrm{A}=\underset{{x}\rightarrow\frac{\pi}{\mathrm{2}}} {\mathrm{lim}}\frac{\mathrm{sin}^{\mathrm{50}} \mathrm{x}+\mathrm{5sin}^{\mathrm{30}} \mathrm{x}−\mathrm{6}}{\mathrm{cos}^{\mathrm{20}} \mathrm{x}+\mathrm{cos}^{\mathrm{40}} \mathrm{2x}−\mathrm{1}} \\ $$ Answered by bemath last updated on 12/Feb/21 Answered…
Question Number 66667 by naka3546 last updated on 18/Aug/19 Commented by naka3546 last updated on 18/Aug/19 $$\frac{\left[{PBQ}\right]}{\left[{PQCA}\right]}\:\:=\:\:? \\ $$ Commented by MJS last updated on…
Question Number 1130 by 123456 last updated on 22/Jun/15 $${f}:\mathbb{R}\rightarrow\mathbb{R} \\ $$$${f}\left({xy}\right)+{f}\left({x}+{y}\right)={f}\left({x}\right){f}\left({y}\right)+{f}\left({x}\right)+{f}\left({y}\right) \\ $$$${f}\left(−\mathrm{1}\right)=? \\ $$$${f}\left(\mathrm{0}\right)=? \\ $$$${f}\left(+\mathrm{1}\right)=? \\ $$ Answered by prakash jain last…