Question Number 1117 by 123456 last updated on 17/Jun/15 $${a}_{\mathrm{0}} =\mathrm{1} \\ $$$${a}_{{n}} =\frac{\sqrt{{a}_{{n}−\mathrm{1}} }}{{a}_{{n}−\mathrm{1}} }+\mathrm{1} \\ $$$$\underset{{n}\rightarrow+\infty} {\mathrm{lim}}\:{a}_{{n}} =? \\ $$ Commented by 123456…
Question Number 1113 by 123456 last updated on 15/Jun/15 $$\mathrm{sin}^{−\mathrm{1}} \left[\frac{\sqrt{\mathrm{3}}}{\mathrm{8}}\left(\sqrt{\mathrm{13}}−\mathrm{1}\right)\right]+\mathrm{sin}^{−\mathrm{1}} \frac{\sqrt{\mathrm{3}}}{\mathrm{4}}=? \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 1112 by malwaan last updated on 14/Jun/15 $${compare}\:\frac{\mathrm{1}}{{log}_{\mathrm{2}} \pi}\:+\:\frac{\mathrm{1}}{{log}_{\mathrm{5}} \pi}\:{and}\:\mathrm{2} \\ $$ Answered by prakash jain last updated on 15/Jun/15 $$\mathrm{log}_{\pi} \mathrm{2}+\mathrm{log}_{\pi} \mathrm{5}=\mathrm{log}_{\pi}…
Question Number 132181 by aurpeyz last updated on 12/Feb/21 Commented by aurpeyz last updated on 12/Feb/21 $$\boldsymbol{{no}}\:\mathrm{10}\:\boldsymbol{{pls}} \\ $$ Answered by ajfour last updated on…
Question Number 132180 by bounhome last updated on 12/Feb/21 $${solve}\:: \\ $$$$\mathrm{2}{sec}^{\mathrm{2}} {x}+\left(\mathrm{2}\sqrt{\mathrm{2}}−\mathrm{3}\right){secx}−\mathrm{3}\sqrt{\mathrm{2}}=\mathrm{0}\:;\:\mathrm{0}\leqslant{x}\leqslant\frac{\pi}{\mathrm{4}} \\ $$ Answered by benjo_mathlover last updated on 12/Feb/21 $$\:\mathrm{3}\sqrt{\mathrm{2}}\:\mathrm{cos}\:^{\mathrm{2}} \mathrm{x}−\left(\mathrm{2}\sqrt{\mathrm{2}}−\mathrm{3}\right)\mathrm{cos}\:\mathrm{x}−\mathrm{2}=\mathrm{0} \\…
Question Number 1107 by rpatle69@gmail.com last updated on 14/Jun/15 $${a}\:{square}\:{is}\:{created}\:{inside}\:{the}\: \\ $$$${circle},{which}\:{side}\:{is}\:\mathrm{4}\:{cm}.{Then}\: \\ $$$${find}\:{out}\:{the}\:{area}\:{between}\:{square} \\ $$$${and}\:{circle}. \\ $$$$ \\ $$$$ \\ $$ Answered by prakash…
Question Number 1106 by 112358 last updated on 14/Jun/15 $${Find}\:{the}\:{following}\:{sum}\:{if}\:{it}\:{converges}: \\ $$$${S}=\underset{{r}=\mathrm{0}} {\overset{\infty} {\sum}}\begin{pmatrix}{\mathrm{1}/\mathrm{2}}\\{\mathrm{2}{r}}\end{pmatrix}\:\left(−\mathrm{1}\right)^{{r}} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 66640 by hmamarques1994@gmail.com last updated on 18/Aug/19 $$\: \\ $$$$\:\underset{\boldsymbol{{x}}\rightarrow\mathrm{4}} {\boldsymbol{{lim}}}\:\frac{\sqrt[{\mathrm{3}}]{\mathrm{2}+\boldsymbol{{x}}\sqrt{\boldsymbol{{x}}}}−\mathrm{2}}{\mathrm{8}−\boldsymbol{{x}}\sqrt{\boldsymbol{{x}}}}=? \\ $$$$\: \\ $$ Commented by kaivan.ahmadi last updated on 18/Aug/19 $${x}\rightarrow\mathrm{4}^{+}…
Question Number 1105 by Yugi last updated on 14/Jun/15 $${Obtain}\:{the}\:{general}\:{term}\:{of}\:{each}\:{of}\:{the}\:{following}\:{sequences}\:\left({if}\:{obtainable}\right) \\ $$$${in}\:{terms}\:{of}\:\Pi\:\left({or}\:{any}\:{other}\:{form}\:{of}\:{notation}\right): \\ $$$$\left.{A}\right)\:\:\:\mathrm{1},\left(\mathrm{1}−{n}\right)\left(\mathrm{1}−\mathrm{2}{n}\right)\:,\:\left(\mathrm{1}−{n}\right)\left(\mathrm{1}−\mathrm{2}{n}\right)\left(\mathrm{1}−\mathrm{3}{n}\right)\left(\mathrm{1}−\mathrm{4}{n}\right)\:,\:\left(\mathrm{1}−{n}\right)\left(\mathrm{1}−\mathrm{2}{n}\right)\left(\mathrm{1}−\mathrm{3}{n}\right)\left(\mathrm{1}−\mathrm{4}{n}\right)\left(\mathrm{1}−\mathrm{5}{n}\right)\left(\mathrm{1}−\mathrm{6}{n}\right),\:… \\ $$$$\left.{B}\right)\:\:\:\mathrm{1},\:\mathrm{1}−{n}\:,\:\left(\mathrm{1}−{n}\right)\left(\mathrm{1}−\mathrm{2}{n}\right)\left(\mathrm{1}−\mathrm{3}{n}\right)\:,\:\left(\mathrm{1}−{n}\right)\left(\mathrm{1}−\mathrm{2}{n}\right)\left(\mathrm{1}−\mathrm{3}{n}\right)\left(\mathrm{1}−\mathrm{4}{n}\right)\left(\mathrm{1}−\mathrm{5}{n}\right),\:… \\ $$ Commented by prakash jain last updated on…
Question Number 132173 by I want to learn more last updated on 11/Feb/21 $$\mathrm{If}\:\:\:\:\mathrm{v}\:\:\:=\:\:\:\frac{\sqrt{\mathrm{p}\:\:\:+\:\:\:\frac{\mathrm{1}}{\mathrm{n}}}}{\mathrm{x}},\:\:\:\:\:\:\:\:\:\mathrm{where}\:\:\:\:\mathrm{p}\:\:=\:\:\:\mathrm{pressure}. \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{dimension}\:\mathrm{of}\:\:\:\:\:\mathrm{n}\:\:\:\mathrm{and}\:\:\:\mathrm{x} \\ $$ Commented by mr W last updated on…