Menu Close

Author: Tinku Tara

Question-66602

Question Number 66602 by aliesam last updated on 17/Aug/19 Commented by Rio Michael last updated on 17/Aug/19 $$\left.\mathrm{16}\right)\:{let}\:{y}\:=\:{x}^{\mathrm{3}} \\ $$$$\:\:\Rightarrow\:\:\frac{{dy}}{{dx}}\:=\:\mathrm{3}{x}^{\mathrm{2}} \\ $$$$\:\frac{{dy}}{{dx}}\mid_{{x}\:=\:−\mathrm{1}} \:=\:\mathrm{3} \\ $$$${when}\:{x}\:=\:−\mathrm{1}\:\:,\:{y}\:=\:−\mathrm{1}\:\:{hence}\:{pt}\:\:\left(−\mathrm{1},−\mathrm{1}\right)…

lim-n-1-1-n-n-1-1-n-n-e-2-n-2-

Question Number 132138 by benjo_mathlover last updated on 11/Feb/21 $$\:\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\left(\frac{\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{n}}\right)^{\mathrm{n}} }{\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{n}}\right)^{\mathrm{n}} }\:−\:\mathrm{e}^{\mathrm{2}} \:\right)\mathrm{n}^{\mathrm{2}} =? \\ $$ Answered by EDWIN88 last updated on 11/Feb/21 $$\mathrm{L}=\mathrm{e}^{\mathrm{2}}…

Question-66599

Question Number 66599 by aliesam last updated on 17/Aug/19 Commented by kaivan.ahmadi last updated on 17/Aug/19 $$\left({a}−{b}\right)^{\mathrm{2}} ={a}^{\mathrm{2}} −{b}^{\mathrm{2}} \Rightarrow{a}^{\mathrm{2}} −\mathrm{2}{ab}+{b}^{\mathrm{2}} ={a}^{\mathrm{2}} −{b}^{\mathrm{2}} \Rightarrow \\…

Question-132135

Question Number 132135 by benjo_mathlover last updated on 11/Feb/21 Answered by Olaf last updated on 11/Feb/21 $${f}\left({x}\right)+{f}\left(\frac{{x}−\mathrm{1}}{{x}}\right)\:=\:\mathrm{1}+{x}\:\:\:\:\:\left(\mathrm{1}\right) \\ $$$$\mathrm{Let}\:{x}\:=\:\frac{{u}−\mathrm{1}}{{u}} \\ $$$$\left(\mathrm{1}\right)\::\:{f}\left(\frac{{u}−\mathrm{1}}{{u}}\right)+{f}\left(\frac{\frac{{u}−\mathrm{1}}{{u}}−\mathrm{1}}{\frac{{u}−\mathrm{1}}{{u}}}\right)\:=\:\mathrm{1}+\frac{{u}−\mathrm{1}}{{u}} \\ $$$${f}\left(\frac{{u}−\mathrm{1}}{{u}}\right)+{f}\left(\frac{\mathrm{1}}{\mathrm{1}−{u}}\right)\:=\:\mathrm{1}+\frac{{u}−\mathrm{1}}{{u}}\:\:\:\:\:\left(\mathrm{2}\right) \\ $$$$\left(\mathrm{1}\right)−\left(\mathrm{2}\right)\::…

Question-132131

Question Number 132131 by Ar Brandon last updated on 11/Feb/21 Commented by Ar Brandon last updated on 11/Feb/21 $$\mathrm{Find}\:\mathrm{the}\:\mathrm{relation}\:\mathrm{between}\:\mathrm{the}\:\mathrm{areas}\:\mathrm{of}\: \\ $$$$\mathrm{triangle}\:\mathrm{ABC}\:\mathrm{and}\:\mathrm{triangle}\:\mathrm{A}'\mathrm{B}'\mathrm{C}' \\ $$ Commented by…

f-R-R-x-i-j-x-R-i-N-j-0-1-f-x-f-i-1-i-1-j-1-x-1-j-0-x-lt-1-x-x-lt-0-f-9-5-

Question Number 1057 by 123456 last updated on 25/May/15 $${f}:\mathbb{R}_{+} \rightarrow\mathbb{R} \\ $$$${x}={i}+{j} \\ $$$${x}\in\mathbb{R}_{+} \\ $$$${i}\in\mathbb{N} \\ $$$${j}\in\left[\mathrm{0},\mathrm{1}\right) \\ $$$${f}\left({x}\right)=\begin{cases}{{f}\left({i}−\mathrm{1}\right)+\left({i}+\mathrm{1}\right)\left({j}+\mathrm{1}\right)}&{{x}\geqslant\mathrm{1}}\\{{j}}&{\mathrm{0}\leqslant{x}<\mathrm{1}}\\{{x}}&{{x}<\mathrm{0}}\end{cases} \\ $$$${f}\left(\mathrm{9}.\mathrm{5}\right)=? \\ $$…