Question Number 1031 by slezthacute@Yahoo.co.id last updated on 21/May/15 $$\mathrm{8}\sqrt{\mathrm{2}} \\ $$ Answered by 123456 last updated on 21/May/15 $$\mathrm{1}<\mathrm{2}<\mathrm{4} \\ $$$$\mathrm{1}<\sqrt{\mathrm{2}}<\mathrm{2} \\ $$$$\mathrm{8}<\mathrm{8}\sqrt{\mathrm{2}}<\mathrm{16} \\…
Question Number 1030 by 123456 last updated on 20/May/15 $$\frac{{dy}}{{dt}}−\frac{{dx}}{{dt}}=\frac{{t}\frac{{dy}}{{dt}}+{y}}{{t}\frac{{dx}}{{dt}}+{x}} \\ $$ Answered by prakash jain last updated on 21/May/15 $${y}={k}_{\mathrm{1}} {t},{x}={k}_{\mathrm{2}} {t} \\ $$$$\frac{{dy}}{{dt}}={k}_{\mathrm{1}}…
Question Number 66564 by aliesam last updated on 17/Aug/19 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 132102 by mr W last updated on 14/Feb/21 Commented by mr W last updated on 16/Feb/21 $${a}\:{ball}\:{is}\:{thrown}\:{from}\:{point}\:{A}\:{with} \\ $$$${speed}\:\boldsymbol{{u}}\:{and}\:{strikes}\:{at}\:{a}\:{point}\:{B} \\ $$$${on}\:{the}\:{semispherical}\:{surface}\:{with} \\ $$$${radius}\:{R}\:{and}\:{returns}\:{back}\:{to}\:{point}\:{A}.…
Question Number 66472 by hmamarques1994@gmail.com last updated on 15/Aug/19 $$\begin{cases}{\sqrt[{\sqrt{\mathrm{6}}}]{\boldsymbol{\mathrm{x}}}+\sqrt[{\sqrt{\mathrm{5}}}]{\boldsymbol{\mathrm{y}}}=\mathrm{11}}\\{\frac{\sqrt[{\sqrt{\mathrm{5}}}]{\boldsymbol{\mathrm{y}}}}{\:\sqrt[{\sqrt{\mathrm{6}}}]{\boldsymbol{\mathrm{x}}}}=\mathrm{1}\frac{\mathrm{1}}{\mathrm{5}}}\end{cases} \\ $$$$\: \\ $$$$\:\boldsymbol{\mathrm{Qual}}\:\:\acute {\boldsymbol{\mathrm{e}}}\:\:\boldsymbol{\mathrm{o}}\:\:\boldsymbol{\mathrm{par}}\:\:\boldsymbol{\mathrm{ordenado}}\:\:\boldsymbol{\mathrm{na}}\:\:\boldsymbol{\mathrm{forma}}\:\:\boldsymbol{\mathrm{a}}^{\sqrt{\boldsymbol{\mathrm{p}}}} \:\:\boldsymbol{\mathrm{e}}\:\:\boldsymbol{\mathrm{b}}^{\sqrt{\boldsymbol{\mathrm{q}}}} \\ $$$$\:\boldsymbol{\mathrm{que}}\:\:\boldsymbol{\mathrm{satisfaz}}\:\:\boldsymbol{\mathrm{o}}\:\:\boldsymbol{\mathrm{sistema}}\:\:\boldsymbol{\mathrm{como}}\:\:\boldsymbol{\mathrm{possivel}}\:\:\boldsymbol{\mathrm{e}}\:\:\boldsymbol{\mathrm{determinado}}? \\ $$ Answered by MJS last updated…
Question Number 651 by 123456 last updated on 19/Feb/15 $$\mathrm{arg}\left(\mathrm{z}−\mathrm{a}\right)−\mathrm{arg}\left(\mathrm{z}−\mathrm{z}_{\mathrm{1}} \right)−\mathrm{arg}\left(\mathrm{z}−\bar {\mathrm{z}}_{\mathrm{1}} \right)={k}\pi \\ $$$${a}\in\mathbb{R} \\ $$$${z}_{\mathrm{1}} \in\mathbb{C},\Im\left(\bar {{z}}_{\mathrm{1}} \right)\neq\mathrm{0} \\ $$$${z}\in\mathbb{C} \\ $$$${k}\in\mathbb{Z} \\…
Question Number 132102 by mr W last updated on 14/Feb/21 Commented bymr W last updated on 16/Feb/21 $${a}\:{ball}\:{is}\:{thrown}\:{from}\:{point}\:{A}\:{with} \\ $$ $${speed}\:\boldsymbol{{u}}\:{and}\:{strikes}\:{at}\:{a}\:{point}\:{B} \\ $$ $${on}\:{the}\:{semispherical}\:{surface}\:{with} \\…
Question Number 66562 by Rio Michael last updated on 17/Aug/19 $${given}\:{that}\:\:\mid{z}\:−\:\mathrm{i}\mid\:=\:\mid{z}\:−\:\mathrm{4}\:+\mathrm{3}\:\mathrm{i}\mid \\ $$$${sketch}\:{the}\:{locus}\:{of}\:\:{z} \\ $$$${find}\:{the}\:{catersian}\:{equation}\:{of}\:{this}\:{locus}. \\ $$ Commented by mathmax by abdo last updated on…
Question Number 132098 by rs4089 last updated on 11/Feb/21 Answered by Ar Brandon last updated on 11/Feb/21 $$\mathrm{S}_{\mathrm{n}} =\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{n}} {\sum}}\frac{\mathrm{n}}{\mathrm{n}^{\mathrm{2}} +\mathrm{kn}+\mathrm{k}^{\mathrm{2}} } \\ $$$$\underset{\mathrm{n}\rightarrow\infty}…
Question Number 66561 by Rio Michael last updated on 17/Aug/19 $${evaluate}\: \\ $$$$\:\:\int_{\mathrm{0}} ^{\mathrm{2}} \mid\:{x}+\:\mathrm{2}\mid\:{dx}. \\ $$ Commented by kaivan.ahmadi last updated on 17/Aug/19 $$\mathrm{0}<{x}<\mathrm{2}\Rightarrow{x}+\mathrm{2}>\mathrm{0}\Rightarrow\mid{x}+\mathrm{2}\mid={x}+\mathrm{2}…